Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unlock Secret of Death Protein’s Activation

23.10.2008
Scientists at Dana-Farber Cancer Institute have identified a previously undetected trigger point on a naturally occurring "death protein" that helps the body get rid of unwanted or diseased cells.

They say it may be possible to exploit the newly found trigger as a target for designer drugs that would treat cancer by forcing malignant cells to commit suicide.

Loren Walensky, MD, PhD, pediatric oncologist and chemical biologist at Dana-Farber and Children's Hospital Boston, and colleagues report in the Oct. 23 issue of the journal Nature that they directly activated this trigger on the "executioner" protein BAX, killing laboratory cells by setting in motion their self-destruct mechanism.

The researchers fashioned a peptide (a protein subunit) that precisely matched the shape of the newly found trigger site on the killer protein, which lies dormant in the cell’s interior until activated by cellular stress. When the peptide docked into the binding site, BAX was spurred into assassin mode. The activated BAX proteins flocked to the cell's power plants, the mitochondria, where they poked holes in the mitochondria’s membranes, killing the cells. This process is called apoptosis, or programmed cell death.

"We identified a switch that turns BAX on, and we believe this discovery can be used to develop drugs that turn on or turn off cell death in human disease by targeting BAX," said Walensky, who is also an assistant professor of pediatrics at Harvard Medical School.

BAX is one of about two dozen proteins known collectively as the BCL-2 family. The proteins interact in various combinations leading to either the survival of a cell or its programmed self-destruction. Cancer cells have an imbalance of BCL-2 family signals that drives them to survive instead of dying on command.

The late Stanley Korsmeyer, MD, an apoptosis research pioneer and Walensky's Dana-Farber mentor, had suggested that killer proteins like BAX could be activated directly by "death domains," termed BH3, contained within a subset of BCL-2 family proteins. He hypothesized that this activating interaction was a fleeting "hit-and-run" event, making it especially challenging for scientists to study the phenomenon.

As suspected, the proposed BAX-activating interactions could not be captured by traditional methods. "When you tried to measure binding of the BH3 subunits to BAX, you couldn't detect the interaction," explained Walensky. He recognized, however, that the BH3 peptides being used in the laboratory didn't retain the coiled shape of the natural BH3 domains that participate in BCL-2 family protein interactions. Walensky and his colleagues pioneered the design of "stapled" BH3 peptides, which contain a chemical crosslink that locks the peptides into their natural coiled shape. With biologically active shape restored, the stapled BH3 peptides bound directly to BAX and triggered its killer activity.

Defining how the activating peptides docked on BAX remained a formidable catch-22. In order to solve the structure of an interaction complex, it needed to be stable enough for analysis. In this case, the BH3 binding event itself triggers BAX to change its shape and self-associate to perform its killer function, rendering the activating interaction unstable by definition.

What if, Walensky proposed, you could set up the interaction of BH3 and BAX under laboratory conditions that caused it to be more stable or proceed in slow motion? The plan was to adjust the potency of the stapled BH3 peptide so that, according to Walensky, "it was good enough to bind BAX, yet activate it just a bit more slowly so that we could actually study the interaction." The researchers would then look for any detectable shift in the three-dimensional structure of the BAX protein to help point them to the docking site.

The researchers used nuclear magnetic resonance (NMR) spectroscopy to monitor the arrangement of atoms in the protein. First authors of the Nature paper Evripidis Gavathiotis, PhD, of Walensky’s laboratory and Motoshi Suzuki, PhD, of Nico Tjandra, PhD,'s laboratory at the National Institutes of Health, succeeded in generating pure BAX protein that could be put into solution with the stapled BH3 peptide -- the latter in increasing concentrations until it initiated a BH3-BAX interaction. Gavathiotis and Suzuki used the NMR technique to spot a group of BAX amino acids, the building blocks of proteins, which were affected by the addition of the stapled BH3 peptide.

"The discrete subset of amino acids that shifted upon exposure to the stapled BH3 peptide mapped to a completely unanticipated location on BAX," said Walensky. The long-elusive binding site on BAX that initiates its killer activity was revealed. "Because BAX lies at the crossroads of the cell's decision to live or die, drugs that directly activate BAX could kill diseased cells like in cancer and BAX-blocking drugs could potentially prevent unwanted cell death, such as in heart attack, stroke, and neurodegeneration," said Walensky.

Additional authors include Marguerite Davis, Kenneth Pitter, Gregory Bird, PhD, and Samuel Katz, MD, PhD, of Dana-Farber, and Ho-Chou Tu, Hyungjin Kim, and Emily H.-Y. Cheng, MD, PhD, of Washington University School of Medicine, St. Louis.

The research was supported, in part, by a grant from the National Institutes of Health.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | Newswise Science News
Further information:
http://www.dana-farber.org
http://www.dfci.harvard.edu/abo/news/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>