Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unlock Secret of Death Protein’s Activation

23.10.2008
Scientists at Dana-Farber Cancer Institute have identified a previously undetected trigger point on a naturally occurring "death protein" that helps the body get rid of unwanted or diseased cells.

They say it may be possible to exploit the newly found trigger as a target for designer drugs that would treat cancer by forcing malignant cells to commit suicide.

Loren Walensky, MD, PhD, pediatric oncologist and chemical biologist at Dana-Farber and Children's Hospital Boston, and colleagues report in the Oct. 23 issue of the journal Nature that they directly activated this trigger on the "executioner" protein BAX, killing laboratory cells by setting in motion their self-destruct mechanism.

The researchers fashioned a peptide (a protein subunit) that precisely matched the shape of the newly found trigger site on the killer protein, which lies dormant in the cell’s interior until activated by cellular stress. When the peptide docked into the binding site, BAX was spurred into assassin mode. The activated BAX proteins flocked to the cell's power plants, the mitochondria, where they poked holes in the mitochondria’s membranes, killing the cells. This process is called apoptosis, or programmed cell death.

"We identified a switch that turns BAX on, and we believe this discovery can be used to develop drugs that turn on or turn off cell death in human disease by targeting BAX," said Walensky, who is also an assistant professor of pediatrics at Harvard Medical School.

BAX is one of about two dozen proteins known collectively as the BCL-2 family. The proteins interact in various combinations leading to either the survival of a cell or its programmed self-destruction. Cancer cells have an imbalance of BCL-2 family signals that drives them to survive instead of dying on command.

The late Stanley Korsmeyer, MD, an apoptosis research pioneer and Walensky's Dana-Farber mentor, had suggested that killer proteins like BAX could be activated directly by "death domains," termed BH3, contained within a subset of BCL-2 family proteins. He hypothesized that this activating interaction was a fleeting "hit-and-run" event, making it especially challenging for scientists to study the phenomenon.

As suspected, the proposed BAX-activating interactions could not be captured by traditional methods. "When you tried to measure binding of the BH3 subunits to BAX, you couldn't detect the interaction," explained Walensky. He recognized, however, that the BH3 peptides being used in the laboratory didn't retain the coiled shape of the natural BH3 domains that participate in BCL-2 family protein interactions. Walensky and his colleagues pioneered the design of "stapled" BH3 peptides, which contain a chemical crosslink that locks the peptides into their natural coiled shape. With biologically active shape restored, the stapled BH3 peptides bound directly to BAX and triggered its killer activity.

Defining how the activating peptides docked on BAX remained a formidable catch-22. In order to solve the structure of an interaction complex, it needed to be stable enough for analysis. In this case, the BH3 binding event itself triggers BAX to change its shape and self-associate to perform its killer function, rendering the activating interaction unstable by definition.

What if, Walensky proposed, you could set up the interaction of BH3 and BAX under laboratory conditions that caused it to be more stable or proceed in slow motion? The plan was to adjust the potency of the stapled BH3 peptide so that, according to Walensky, "it was good enough to bind BAX, yet activate it just a bit more slowly so that we could actually study the interaction." The researchers would then look for any detectable shift in the three-dimensional structure of the BAX protein to help point them to the docking site.

The researchers used nuclear magnetic resonance (NMR) spectroscopy to monitor the arrangement of atoms in the protein. First authors of the Nature paper Evripidis Gavathiotis, PhD, of Walensky’s laboratory and Motoshi Suzuki, PhD, of Nico Tjandra, PhD,'s laboratory at the National Institutes of Health, succeeded in generating pure BAX protein that could be put into solution with the stapled BH3 peptide -- the latter in increasing concentrations until it initiated a BH3-BAX interaction. Gavathiotis and Suzuki used the NMR technique to spot a group of BAX amino acids, the building blocks of proteins, which were affected by the addition of the stapled BH3 peptide.

"The discrete subset of amino acids that shifted upon exposure to the stapled BH3 peptide mapped to a completely unanticipated location on BAX," said Walensky. The long-elusive binding site on BAX that initiates its killer activity was revealed. "Because BAX lies at the crossroads of the cell's decision to live or die, drugs that directly activate BAX could kill diseased cells like in cancer and BAX-blocking drugs could potentially prevent unwanted cell death, such as in heart attack, stroke, and neurodegeneration," said Walensky.

Additional authors include Marguerite Davis, Kenneth Pitter, Gregory Bird, PhD, and Samuel Katz, MD, PhD, of Dana-Farber, and Ho-Chou Tu, Hyungjin Kim, and Emily H.-Y. Cheng, MD, PhD, of Washington University School of Medicine, St. Louis.

The research was supported, in part, by a grant from the National Institutes of Health.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | Newswise Science News
Further information:
http://www.dana-farber.org
http://www.dfci.harvard.edu/abo/news/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>