Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal for first time the exact process by which chaotic systems synchronize

08.01.2019

New phenomenon, called Topological Synchronization, may lead to a better understanding of self-organization in complex systems in nature, such as the human brain

Synchronization, in which two different systems oscillate in an identical way, underlies numerous collective phenomena observed in nature, providing an example for emergent behaviors ranging from the acoustic unison of cricket choruses to the behavior of the human brain.


These shapes of donuts are the global structures of the Rossler system (named Rossler attractors). The colored points are the local synchronizations that emerged between the systems in different coupling strengths.

Credit: Nir Lahav

Can chaotic systems also synchronize with each other? How do synchronization and self-organization emerge from systems that didn't have these properties to begin with?

Characterizing and understanding the transition from disorder to synchrony is of fundamental importance to understanding the emergence of synchronization and self-organization in nature.

In a new study published in Physical Review E, physicists from Bar-Ilan University in Israel, along with colleagues from Spain, India and Italy, analyzed the Rossler system, a well-known chaotic system which physicists have studied thoroughly for almost 40 years. Looking at this system from a fresh perspective, they discovered new phenomena that have been overlooked until now.

For the first time the researchers were able to measure the fine grain process that leads from disorder to synchrony, discovering a new kind of synchronization between chaotic systems. They call this new phenomenon Topological Synchronization. Traditionally, synchronization has been examined by comparing the time-course of activity of the two systems.

Topological Synchronization instead examines synchronization by comparing the structures of the systems. The chaotic system is therefore examined at the level of its structure, taking a more global approach to determine the process of synchronization.

"Chaotic systems, although unpredictable, still have a subtle global organization called strange attractor," says Nir Lahav, of Bar-Ilan University's Department of Physics, the study's lead author. "Every chaotic system attracts its own unique strange attractor. By Topological Synchronization we mean that two strange attractors have the same organization and structures.

At the beginning of the synchronization process, small areas on one strange attractor have the same structure of the other attractor, meaning that they are already synced to the other attractor. At the end of the process, all the areas of one strange attractor will have the structure of the other and complete Topological Synchronization has been reached."

The discovery of Topological Synchronization reveals that, in contrast to what was previously assumed, chaotic systems synchronize gradually through local structures that, surprisingly, kick off in the sparse areas of the system and only then spread to the more populated areas. In these sparse areas the activity is less chaotic than in other areas and, as a result, it is easier for these areas to sync relative to those that are much more erratic.

"In order to understand why this is surprising, think of this scenario: two groups of friends meet at a party. In every group we can find extroverts, who easily connect with strangers, and introverts, who find it harder to connect with a new group," explains Lahav.

"We would assume that the first connections would occur between the extroverts and only later would the introverts create connections. It would be very surprising to see this happen the other way around. But this is exactly what we found in our results. We assumed that the dense areas of the system, where most of the activity is, would sync with each other first (like the extroverts), but in reality we discovered that the low-density areas were the first to sync (the introverts)."

This conceptual novelty pertains not only to our fundamental understanding of synchronization, but also carries direct practical implications on the predictability limits of chaotic systems. Indeed, thanks to this newly-defined local synchronization, the researchers show that the state of one system can be inferred from measurements of the other, even in the absence of global synchrony. We can predict where synchronized areas will appear in week coupling, much before complete synchronization.

The researchers are currently applying their findings to try to uncover how self-organization may emerge in other complex systems in nature such as the human brain.

Elana Oberlander | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevE.98.052204

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

Im Focus: Tumors backfire on chemotherapy

Some patients with breast cancer receive chemotherapy before the tumor is removed with surgery. This approach, called 'neoadjuvant' therapy, helps to reduce the size of the tumor to facilitate breast-conserving surgery, and can even eradicate the tumor, leaving few or no cancerous cells for the surgeon to remove. In those cases, the patients are very likely to remain cancer-free for life after surgery.

But not all tumors shrink under chemotherapy. If the tumor resists neoadjuvant therapy, there can be a higher risk of developing metastatic disease, meaning...

Im Focus: One of the world's fastest cameras films motion of electrons

Kiel research team examines ultrafast conversion of light energy in a solid

During the conversion of light into electricity, such as in solar cells, a large part of the input light energy is lost. This is due to the behaviour of...

Im Focus: First detection of rain over the ocean by navigation satellites

In order to analyse climate change or provide information about natural hazards, it is important to gather knowledge about the rain. Better knowledge of precipitation and its distribution could, for example, help protect against river flooding. A new approach uses, for the first time, information contained in radar signals from navigation satellites to detect rain over the sea. The technology could help to monitor atmospheric precipitation better than before.

In order to analyse climate change or provide information on natural hazards, for example, it is important for researchers to gather knowledge about rain.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

How herpesviruses shape the immune system

09.01.2019 | Health and Medicine

Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor

09.01.2019 | Interdisciplinary Research

Research explains public resistance to vaccination

09.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>