Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists recreate blood-brain barrier defect outside the body

07.06.2019

Scientists can't make a living copy of your brain outside your body. That's the stuff of science fiction. But in a new study, they recreated a critical brain component, the blood-brain barrier, that functioned as it would in the individual who provided the cells to make it. Their achievement - detailed in a study published today in the peer-reviewed journal Cell Stem Cell - provides a new way to make discoveries about brain disorders and, potentially, predict which drugs will work best for an individual patient.

The blood-brain barrier acts as a gatekeeper by blocking toxins and other foreign substances in the bloodstream from entering brain tissue and damaging it. It also can prevent potential therapeutic drugs from reaching the brain.


Organ-Chip recreates the microenvironment that cells require to exhibit an unprecedented level of biological function and to behave like they do in the human body.

Credit: Emulate, Inc.

Neurological disorders such as amyotrophic lateral sclerosis (Lou Gehrig's disease), Parkinson's disease and Huntington's disease, which collectively affect millions of people, have been linked to defective blood-brain barriers that keep out biomolecules needed for healthy brain activity.

For their study, a team led by Cedars-Sinai investigators generated stem cells known as induced pluripotent stem cells, which can produce any type of cell, using an individual adult's blood samples. They used these special cells to make neurons, blood-vessel linings and support cells that together make up the blood-brain barrier.

The team then placed the various types of cells inside Organ-Chips, which recreated the body's microenvironment with the natural physiology and mechanical forces that cells experience within the human body.

The living cells soon formed a functioning unit of a blood-brain barrier that functions as it does in the body, including blocking entry of certain drugs. Significantly, when this blood-brain barrier was derived from cells of patients with Huntington's disease or Allan-Herndon-Dudley syndrome, a rare congenital neurological disorder, the barrier malfunctioned in the same way that it does in patients with these diseases.

While scientists have created blood-brain barriers outside the body before, this study further advanced the science by using induced pluripotent stem cells to generate a functioning blood-brain barrier, inside an Organ-Chip, that displayed a characteristic defect of the individual patient's disease.

The study's findings open a promising pathway for precision medicine, said Clive Svendsen, PhD, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute. "The possibility of using a patient-specific, multicellular model of a blood-brain barrier on a chip represents a new standard for developing predictive, personalized medicine," he said. Svendsen, professor of Medicine and Biomedical Sciences, was the senior author of the study.

The research combined the innovative stem cell science from investigators at Cedars-Sinai in Los Angeles with the advanced Organs-on-Chips technology of Emulate, Inc. in Boston. Emulate's Human Emulation System recreates the microenvironment that cells require to exhibit an unprecedented level of biological function and to behave like they do in the human body. The system consists of instrumentation, software apps, and Organ-Chips, about the size of AA batteries, with tiny fluidic channels lined with tens of thousands of living human cells.

The co-first authors of the study are Gad Vatine, PhD, from Ben-Gurion University of the Negev in Beer Sheva, Israel, a former postdoctoral scientist at Cedars-Sinai; Riccardo Barrile, PhD, of Emulate, a former postdoctoral fellow at Cedars-Sinai; and Michael Workman, a PhD student in the Cedars-Sinai Graduate School of Biomedical Sciences.

The research is one of several collaborative projects involving Cedars-Sinai and Emulate, Inc., which In February 2018 announced a joint Patient-on-a-Chip program to help predict which disease treatments would be most effective based on a patient's genetic makeup and disease variant. The program is an initiative of Cedars-Sinai Precision Health, whose goal is to drive the development of the newest technology and best research, coupled with the finest clinical practice, to rapidly enable a new era of personalized health.

###

Disclosure: Cedars-Sinai owns a minority stock interest in Emulate, Inc. An officer of Cedars-Sinai serves on Emulate's board of directors. Emulate provided no financial support for this research. Six of the study's authors are employees and shareholders of Emulate.

Funding: Research reported in this publication was supported by the National Institute of Neurological Disorders and Stroke and the National Center for Advancing Translational Sciences of the National Institutes of Health under award number 1UG3NS105703, the California Institute for Regenerative Medicine, The ALS Association, the Sherman Family Foundation and the Israel Science Foundation.

DOI: 10.1016/j.stem.2019.05.011

Read more on the Cedars-Sinai Blog: What Are Induced Pluripotent Stem Cells?

Media Contact

Jane Engle
Jane.Engle@cshs.org
310-248-8545

 @cedarssinai

http://www.csmc.edu 

Jane Engle | EurekAlert!
Further information:
http://www.cedars-sinai.org/newsroom/scientists-recreate-blood-brain-barrier-defect-outside-the-body/
http://dx.doi.org/10.1016/j.stem.2019.05.011

More articles from Life Sciences:

nachricht NIH HIV experts prioritize research to achieve sustained ART-free HIV remission
07.06.2019 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Snout dated: Slow-evolving elephant shark offers new insights into human physiology
06.06.2019 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

Im Focus: 2D crystals conforming to 3D curves create strain for engineering quantum devices

A team led by scientists at the Department of Energy's Oak Ridge National Laboratory explored how atomically thin two-dimensional (2D) crystals can grow over 3D objects and how the curvature of those objects can stretch and strain the crystals. The findings, published in Science Advances, point to a strategy for engineering strain directly during the growth of atomically thin crystals to fabricate single photon emitters for quantum information processing.

The team first explored growth of the flat crystals on substrates patterned with sharp steps and trenches. Surprisingly, the crystals conformally grew up and...

Im Focus: Experiments and calculations allow examination of boron's complicated dance

Work opens a path to precise calculations of the structure of other nuclei.

In a study that combines experimental work and theoretical calculations made possible by supercomputers, scientists have determined the nuclear geometry of two...

Im Focus: Fraunhofer HHI and IAF demonstrate the first wireless real-time video transmission using Terahertz

The Fraunhofer Heinrich Hertz Institute HHI develops next-generation wireless transmission systems (Beyond 5G) based on Terahertz (THz) technologies. The THz technology supports significantly higher data transmission rates than current 4G and 5G mobile wireless technologies. Researchers of the department Photonic Networks and Systems, in collaboration with the Fraunhofer Institute for Applied Solid State Physics IAF, have succeeded in transmitting a 4K video in real-time over a wireless THz link. This was the first time this technology was successfully realized in a real-time experiment. A wireless transmission capacity of 100 Gbit/s was demonstrated over the THz link.

Requirements placed on transmission capacities in communication networks are continuously growing, driven by new applications such as Industry 4.0, autonomous...

Im Focus: Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

NIH HIV experts prioritize research to achieve sustained ART-free HIV remission

07.06.2019 | Life Sciences

Scientists recreate blood-brain barrier defect outside the body

07.06.2019 | Life Sciences

Multi-functional laser tools for lightweight construction and e-mobility

06.06.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>