Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify genetic mechanism that contributed to Irish Famine

07.02.2013
Research by UC Riverside plant pathologists is the first to show that RNA silencing regulates plant defense against the notorious Phytophthora pathogens

When a pathogen attacks a plant, infection usually follows after the plant's immune system is compromised. A team of researchers at the University of California, Riverside focused on Phytophthora, the pathogen that triggered the Irish Famine of the 19th century by infecting potato plants, and deciphered how it succeeded in crippling the plant's immune system.

The genus Phytophthora contains many notorious pathogens of crops. Phytophthora pathogens cause worldwide losses of more than $6 billion each year on potato (Phytophthora infestans) and about $2 billion each year on soybean (Phytophthora sojae).

The researchers, led by Wenbo Ma, an associate professor of plant pathology and microbiology, focused their attention on a class of essential virulence proteins produced by a broad range of pathogens, including Phytophthora, called "effectors." The effectors are delivered to, and function only in, the cells of the host plants the pathogens attack. The researchers found that Phytophthora effectors blocked the RNA silencing pathways in their host plants (such as potato, tomato, and soybean), resulting first in a suppression of host immunity and thereafter in an increase in the plants' susceptibility to disease.

"Phytophthora has evolved a way to break the immunity of its host plants," Ma explained. "Its effectors are the first example of proteins produced by eukaryotic pathogens — nucleated single- or multi-cellular organisms — that promote infection by suppressing the host RNA silencing process. Our work shows that RNA silencing suppression is a common strategy used by a variety of pathogens — viruses, bacteria and Phytophthora — to cause disease, and shows, too, that RNA silencing is an important battleground during infection by pathogens across kingdoms."

Study results appeared online Feb. 3 in Nature Genetics.

What is RNA silencing and what is its significance? RNA is made from DNA. Many RNAs are used to make proteins. However, these RNAs can be regulated by "small RNA" (snippets of RNA) that bind to them. The binding leads to suppression of gene expression. Known as RNA gene silencing, this suppression plays an important role in regulating plant growth and development. When RNA silencing is impaired by effectors, the plant is more susceptible to disease.

Basic RNA silencing processes are conserved in plant and mammalian systems. They serve as a major defense mechanism against viruses in plants and invertebrates. RNA silencing has also been implicated in anti-bacterial plant defense. The discovery by Ma's lab is the first to show that RNA silencing regulates plant defense against eukaryotic pathogens.

"Phytophthora effectors have a motif or signature — a specific protein code — that allows the proteins to be delivered into host cells," Ma said. "A similar motif is found in effectors of animal parasites, such as the malaria pathogen Plasmodium, suggesting an evolutionarily conserved means for delivering effectors that affect host immunity."

Next, her lab will work on extensively screening other pathogens and identifying their effectors' direct targets so that novel control strategies can be developed to manage the diseases the pathogens cause.

Ma was joined in the study by UC Riverside's Yongli Qiao, Lin Liu, Cristina Flores, James Wong, Jinxia Shi, Xianbing Wang, Xigang Liu, Qijun Xiang, Shushu Jiang, Howard S. Judelson and Xuemei Chen; Fuchun Zhang at Xinjiang University, China; and Qin Xiong and Yuanchao Wang at Nanjing Agricultural University, China.

The research was supported by a National Science Foundation grant to Ma and grants from the U.S. Department of Agriculture (USDA) to Judelson and Chen.

In 2011, UCR received a $9 million USDA grant to research late blight, caused by Phytophthora infestans, that mainly attacks potatoes and tomatoes. Last year, UCR released avocado rootstocks that can help control Phytophthora root rot, a disease that has eliminated commercial avocado production in many areas of the world.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>