Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists gain new understanding of disease-causing bacteria

01.12.2009
For the first time, research elucidates the cellular structure of syphilis pathogen

A team of scientists from The Forsyth Institute, the University of Connecticut Health Center, the CDC and the Wadsworth Center, have used state-of-the-art technology to elucidate the molecular architecture of Treponema pallidum, the bacterium which causes syphilis.

The previously unknown detailed structure of the bacteria can now be shown in three dimensions. This provides the first real image of the pathogen and reveals previously unknown features, which may help fight the spread of syphilis.

Cryo-electron tomography (CET) is a type of microscope that is used to obtain a three-dimensional reconstruction of a sample from two dimensional images at extremely low temperatures. Using CET, the research team has clarified the fundamental differences between Treponema pallidum and other gram-negative bacteria.

This research will be featured as the cover story in the December 15th issue of the Journal of Bacteriology. (http://jb.asm.org/content/vol191/issue24/cover.dtl) According to lead author Jacques Izard, Ph.D., this work provides a clear snapshot of a cell in real time. Added Izard, "This changes how we study this bacterium. Having an accurate architecture of the cell provides important insight for understanding how it becomes invasive in the human body. With this information we may learn how to stop disease progression."

After a sharp decrease in the rate of primary and secondary syphilis cases in the 90s, since the year 2000 the CDC has observed a steady increase in prevalence. The over 36,000 cases recorded annually affect both men and women as well as newborns with congenital syphilis.

Project Summary

Over a decade ago, the publication of the Treponema pallidum genome sequence provided a much needed parts list for the bacterium. However, scientists have learned very little about how these components are organized to create this extremely virulent and immuno-evasive pathogen. CET has emerged as a powerful tool for bridging the knowledge gap. With this technique, thin films of cells are frozen to preserve cell structure in a close-to-native state, avoiding degradation caused by preparation for traditional microscopy. A series of images acquired as the sample is progressively tilted in an electron microscope are used to generate a 3D image.

With CET T. pallidum cells appeared to form flat waves and did not contain an outer coat. This highly motile organism can attach to human cells by its tip. The present work has shown that the tip of this bacteria has a unique structure among pathogens, which improved the understanding of cell attachment and tissue penetration. Additionally, novel structural evidence explains how those bacteria mysteriously move with the flagella inside their cell body.

This work was supported by grants from the National Institutes of Health and the National Center for Research Resources.

Jacques Izard, Ph.D., is an Assistant Member of the Staff in the Department of Molecular Genetics at The Forsyth Institute. His laboratory is working to understand the role of oral pathogens in oral disease and their influence on systemic disease progression. Dr. Izard and his team focus on bacterial cell biology and the host response. To learn more about his work visit http://www.forsyth.org/research/scientists/profiles/jizard.html.

The Forsyth Institute is the world's leading independent organization dedicated to scientific research and education in oral health and related biomedical sciences. Established in 1910, Forsyth's goal is to lead the discovery, communication and application of breakthroughs in oral health and disease prevention that will significantly improve the health and wellbeing of the nation and the world. For more information about Forsyth visit its Web site at www.forsyth.org.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>