Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find differences in long-lived rodent’s protein handlers

14.05.2012
Animal’s good health likely tied to effective removal of damaged proteins

The naked mole-rat, a curiously strange, hairless rodent, lives many years longer than any other mouse or rat. Scientists at The University of Texas Health Science Center San Antonio’s Barshop Institute of Longevity and Aging Studies continue to explore this mystery.

On May 2 a Barshop Institute team reported that the naked mole-rat’s cellular machines for protein disposal — called proteasome assemblies — differ in composition from those of other short-lived rodents. The study is in the journal PLoS ONE.

This is the first report of the molecular mechanisms that underlie the naked mole-rat’s superior ability to maintain protein integrity. “More effective removal of damaged proteins within the cell would enable the animal to be able to maintain good function and is likely to contribute to its excellent maintenance of good health well into its third decade of life,” said Rochelle Buffenstein, Ph.D., of the Barshop Institute. Dr. Buffenstein is a professor of physiology and cellular and structural biology in the School of Medicine at the UT Health Science Center.

Protein integrity

Dr. Buffenstein and her research team in 2009 reported that the naked mole-rat maintains exceptional protein integrity throughout its long and healthy life. In the new study, the team found a greater number of proteasomes and higher protein-disposal activity in naked mole-rat liver cells.

The Barshop Institute scientists, including lead author Karl Rodriguez, Ph.D., postdoctoral fellow, and Yael Edrey, graduate student, also found large numbers of immunoproteasomes in the liver cells — a bit of a surprise because these protein disposers, which remove antigens after presentation in the immune system, are more commonly found in the spleen and thymus.

“Given the high levels of oxidative damage routinely seen in liver tissue of naked mole-rats, it is likely that, in the liver, these immunoproteasomes may play a critical role in the processing of oxidatively damaged proteins,” Dr. Buffenstein said.

Oxidative stress

Oxygen is a reactive molecule, rusting unsealed metals and darkening fruit. In the body over time, it is thought to cause an accumulation of damage leading to functional decline, diseases and aging. This is called the oxidative stress theory of aging.

Naked mole-rats, which live underground in the wild, exhibit high levels of oxidative stress even at a young age, yet do not show many signs of age-related decline until very late in life.

“The composition of proteasomes and the presence of immunoproteasomes in the liver are key pieces of the jigsaw puzzle evaluating how naked mole-rats preserve health span well into their third decade of life,” Dr. Buffenstein said.

Co-authors also included Barshop Institute members Maria Gaczynska, Ph.D., associate professor of molecular medicine in the School of Medicine, and Pawel Osmulski, Ph.D., assistant professor of molecular medicine.

The University of Texas Health Science Center at San Antonio, one of the country’s leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving federal funding. Research and other sponsored program activity totaled $231 million in fiscal year 2011. The university’s schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 28,000 graduates. The $736 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways “We make lives better®,” visit www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>