Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Differences in Embryonic Stem Cells and Reprogrammed Skin Cells

03.07.2009
UCLA researchers have found that embryonic stem cells and skin cells reprogrammed into embryonic-like cells have inherent molecular differences, demonstrating for the first time that the two cell types are clearly distinguishable from one another.

The data from the study suggest that embryonic stem cells and the reprogrammed cells, known as induced pluripotent stem (iPS) cells, have overlapping but still distinct gene expression signatures.

The differing signatures were evident regardless of where the cell lines were generated, the methods by which they were derived or the species from which they were isolated, said Bill Lowry, a researcher with the Broad Stem Cell Research Center and a study author.

“We need to keep in mind that iPS cells are not perfectly similar to embryonic stem cells,” said Lowry, an assistant professor of molecular, cell and developmental biology. “We’re not sure what this means with regard to the biology of pluripotent stem cells. At this point our analyses comprise just an observation. It could be biologically irrelevant, or it could be manifested as an advantage or a disadvantage.”

The study appears in the July 2, 2009 issue of the journal Cell Stem Cell.

The iPS cells, like embryonic stem cells, have the potential to become all of the tissues in the body. However, iPS cells don’t require the destruction of an embryo.

The study was a collaboration between the labs of Lowry and UCLA researcher Kathrin Plath, who were among the first scientists and the first in California to reprogram human skin cells into iPS cells. The researchers performed microarray gene expression profiles on embryonic stem cells and iPS cells to measure the expression of thousands of genes at once, creating a global picture of cellular function.

Lowry and Plath noted that, when the molecular signatures were compared, it was clear that certain genes were expressed differently in embryonic stem cells than they were in iPS cells. They then compared their data to that stored on a National Institutes of Health data base, submitted by laboratories worldwide. They analyzed that data to see if the genetic profiling conducted in other labs validated their findings, and again they found overlapping but distinct differences in gene expression, Lowry said.

“This suggested to us that there could be something biologically relevant causing the distinct differences to arise in multiple labs in different experiments,” Lowry said. “That answered our first question: Would the same observation be made with cell lines created and maintained in other laboratories?”

Next, UCLA researchers wanted to confirm their findings in iPS cell lines created using the latest derivation methods. The cells from the UCLA labs were derived using an older method that used integrative viruses to insert four genes into the genome of the skin cells, including some genes known to cause cancer. They analyzed cell lines derived with newer methods that do not require integration of the reprogramming factors. Their analysis again showed different molecular signatures between iPS cells and their embryo-derived counterparts, and these signatures showed a significant degree of overlap with those generated with integrative methods.

To determine if this was a phenomenon limited to human embryonic stem cells, Lowry and Plath analyzed mouse embryonic stem cells and iPS lines derived from mouse skin cells and again validated their findings. They also analyzed iPS cell lines made from mouse blood cells with the same result

"We can’t explain this, but it appears something is different about iPS cells and embryonic stem cells,” Lowry said. “And the differences are there, no matter whose lab the cells come from, whether they’re human or mouse cells or the method used to derive the iPS cells. Perhaps most importantly, many of these differences are shared amongst lines made in various ways.”

Going forward, UCLA researchers will conduct more sophisticated analyses on the genes being expressed differently in the two cell types and try to understand what is causing that differential expression. They also plan to differentiate the iPS cells into various lineages to determine if the molecular signature is carried through to the mature cells. In their current study, Lowry and Plath did not look at differentiated cells, only the iPS and embryonic stem cells themselves.

Further study is crucial, said Mark Chin, a postdoctoral fellow and first author of the study.

"It will be important to further examine these cells lines in a careful and systematic manner, as has been done with other stem cell lines, if we are to understand the role they can play in clinical therapies and what effect the observed differences have on these cells," he said.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 150 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>