Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover genetic switch that can prevent peripheral vascular disease in mice

29.07.2014

Millions of people in the United States have a circulatory problem of the legs called peripheral vascular disease. It can be painful and may even require surgery in serious cases. This disease can lead to severe skeletal muscle wasting and, in turn, limb amputation.

At The University of Texas Health Science Center at Houston (UTHealth) Medical School, scientists tested a non-surgical preventative treatment in a mouse model of the disease and it was associated with increased blood circulation. Their proof-of-concept study appears in the journal Cell Reports.


Working to develop a new treatment for peripheral vascular disease from left to right are UTHealth researchers Vikas Yadav, Ph.D., Sabina Lorca and Vihang Narkar, Ph.D.

Credit: The University of Texas Health Science Center at Houston (UTHealth)

Unlike previous studies in which other investigators used individual stimulatory factors to grow blood vessels, Vihang Narkar, Ph.D., senior author and assistant professor in the Department of Integrative Biology and Pharmacology at the UTHealth Medical School, identified and turned off a genetic switch that stifles blood vessel development.

"We discovered an inhibitory switch that degrades blood vessels," said Narkar, whose laboratory is in the UTHealth Center for Metabolic and Degenerative Diseases at The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases. "We were able to genetically turn it off to prevent peripheral vascular disease in a preclinical study."

Added Narkar, "Our next step will be to test this targeted treatment in models of other conditions that dramatically decrease circulation like diabetes and atherosclerosis."

Narkar said using individual growth factors to stimulate blood vessel growth often leads to the formation of leaky and non-functional blood vessels. "By turning off a genetic switch that acts as a roadblock for blood vessel growth, we were able to trigger and accelerate the natural process of blood vessel regeneration that involves a battery of growth factors," he said.

The switch is called peroxisome proliferator-activated receptor gamma co-activator 1 beta (PGC1beta) and could be a key to future treatments for additional conditions like cardiac myopathies, cancer and retinopathy.

###

Narkar's UTHealth co-authors are Vikas Yadav, Ph.D. (lead author), Antonios Matsakas, Ph.D., and Sabina Lorca. Narkar is on the faculty of The University of Texas Graduate School of Biomedical Sciences at Houston.

The study titled "PGC1beta activates anti-angiogenic program to repress neo-angiogenesis in muscle ischemia" received support from the American Heart Association (AHA#11SDG7600213), American Diabetes Association (ADA#1-13-BS-127) and Muscular Dystrophy Association (MDA#174408).

Robert Cahill | Eurek Alert!

Further reports about: UTHealth blood cardiac myopathie circulation conditions genetic switch peripheral vascular

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>