Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists determine family tree for most-endangered bird family in the world

21.10.2011
Using one of the largest DNA data sets for a group of birds and employing next-generation sequencing methods, Smithsonian scientists and collaborators have determined the evolutionary family tree for one of the most strikingly diverse and endangered bird families in the world, the Hawaiian honeycreepers.

Not only have the researchers determined the types of finches that the honeycreeper family originally evolved from, but they have also linked the timing of that rapid evolution to the formation of the four main Hawaiian Islands.

"There were once more than 55 species of these colorful songbirds, and they are so diverse that historically it wasn't even entirely clear that they were all part of the same group," said Heather Lerner, who was a postdoctoral researcher at the Smithsonian Conservation Biology Institute's Center for Conservation and Evolutionary Genetics when she conducted this research, and is currently an assistant professor of biology at Earlham College and Joseph Moore Museum director.

"Some eat seeds, some eat fruit, some eat snails, some eat nectar. Some have the bills of parrots, others of warblers, while some are finch-like and others have straight, thin bills. So the question that we started with was how did this incredible diversity evolve over time," Lerner said.

The answer is unique to the Hawaiian Islands, which are part of a conveyor belt of island formation, with new islands popping up as the conveyor belt moves northwest. Each island that forms represents a blank slate for evolution, so as one honeycreeper species moves from one island to a new island, those birds encounter new habitat and ecological niches that may force them to adapt and branch off into distinct species.

The researchers looked at the evolution of the Hawaiian honeycreepers after the formation of Kauai-Niihau, Oahu, Maui-Nui and Hawaii. The largest burst of evolution into new species, called a radiation, occurred between 4 million and 2.5 million years ago, after Kauai-Niihau and Oahu formed but before the remaining two large islands existed, and resulted in the evolution of six of 10 distinct groups of species characterized by different sizes, shapes and colors.

"This radiation is one of the natural scientific treasures that the archipelago offers out in the middle of the Pacific," said Helen James, a research zoologist at the Smithsonian's National Museum of Natural History and a co-author of the paper. "It was fascinating to be able to tie a biological system to geological formation and allowed us to become the first to offer a full picture of these birds' adaptive history."

James' previous work on Hawaiian birds' morphology, the branch of biology that deals with form and structure of organisms, played a pivotal role in determining which avian species to survey to determine the closest living relatives of the Hawaiian honeycreepers.

Using genetic data from 28 bird species that seemed similar to the honeycreepers morphologically, genetically or that shared geographic proximity, the paper's authors determined that the various honeycreeper species evolved from Eurasian rosefinches. Unlike most other ancestral bird species that came from North America and colonized the Hawaiian Islands, the rosefinch likely came from Asia, the scientists found.

"There is a perception that there are no species remaining that are actually native to Hawaii, but these are truly native birds that are scientifically valuable and play an important and unique ecological function," said Rob Fleischer, head of SCBI's Center for Conservation and Evolutionary Genetics and a co-author of the paper.

Fleischer has been studying the genetics, evolution and conservation of these birds for more than 25 years. "I'm thrilled that we finally had enough DNA sequence and the necessary technology to become the first to produce this accurate and reliable evolutionary tree."

The diversity of Hawaiian honeycreepers has taken a huge hit, with more than half of the known 56 species already extinct. The paper's researchers focused on the 19—now 18—species that have not gone extinct, but of those, six are considered critically endangered by the International Union for Conservation of Nature, four are considered endangered and five are vulnerable.

The next, ongoing step in the research is to use museum specimens and subfossil bones to determine where the extinct species fit into the evolutionary family tree, or phylogeny, to see if the new lineages fit into the overall pattern found in this study.

To analyze the DNA for the study that came out this week, the researchers used specialized next generation sequencing protocols developed by Michi Hofreiter's group at the Max Planck Institute for Evolutionary Anthropology. To look at ancient DNA that is by nature damaged or degraded, they are using additional innovative techniques to capture the DNA and come up with a sufficiently informative dataset.

The study's authors from SCBI are Lerner and Fleischer. The additional authors are James from the Smithsonian's National Museum of Natural History, Hofreiter from the University of York and Matthias Meyer from the Max Planck Institute for Evolutionary Anthropology. The work was funded by the National Science Foundation.

The Smithsonian Conservation Biology Institute plays a key role in the Smithsonian's global efforts to understand and conserve species and train future generations of conservationists. Headquartered in Front Royal, Va., SCBI facilitates and promotes research programs based at Front Royal, the National Zoo in Washington, D.C., and at field research stations and training sites worldwide.

These findings will be published in the hard-copy version of Current Biology Nov. 8, with Lerner as lead author. (A PDF version of the paper is available online on Current Biology's media pages.)

Lindsay Renick Mayer | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht New gene potentially involved in metastasis identified
26.03.2019 | Institute of Science and Technology Austria

nachricht Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity
26.03.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>