Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The way of science

02.04.2013
Surprising findings in mitochondrial biology change long-standing ideas on the protein MTERF1

New findings in mitochondrial biology thoroughly change the idea scientists had for 20 years on the role and importance of the protein MTERF1. For the first time, Max Planck researcher Mügen Terzioglu investigated in vivo what was up to now only explored in cell culture. Using the mouse as a model organism, she made a surprising discovery:

MTERF1 does after all not play the key role in mitochondrial transcription and translation that was hitherto ascribed to it. Terzioglu’s findings will change the way we look at the regulation of mitochondrial function in the cell.

With her study, the young researcher demonstrates the way science often works: Long-standing research findings might be overthrown by surprising new insights, thus necessitating future projects with regard to related questions to take on a whole new direction. Mügen Terzioglu is a researcher in the department „Mitochondrial Biology“, headed by Director Nils-Göran Larsson at the Max Planck Institute (MPI) for Biology of Ageing in Cologne. She carried out her project with an international team of scientists at the MPI and at the Karolinska Institute in Stockholm.

Proteins are the “work horses“ of an organism. They perform a variety of different processes, for instance regulating genes, controlling metabolism or making cells perform specialized functions. MTERF1 is such a work horse, carrying out its tasks in the mitochondria, also known as the “power houses“ of the cell since they supply energy by converting components in the food we eat to ATP. And while the genetic blueprint of a living organism is largely held in the cell nucleus, the mitochondria carry their own hereditary information, also in the form of DNA. In this context, MTERF1’s special role is to act as a so-called “mitochondrial transcription termination factor“: It defines the right stopping place when it comes to transcribe a section on the DNA into RNA. RNA in turn delivers the genetic information to the ribosomes, which can be described as the “protein-making factories“ of the cell: They synthesize proteins according to the instructions held by the RNA.

“Up to now, the role of MTERF1 was only investigated in vitro, using cell culture. And for two decades, this protein was thought to play a crucial role in the regulation of transcription, eventually acting as a key regulator for mitochondrial protein synthesis in mammals“, explains Mügen Terzioglu. “However, by engineering an appropriate mouse model for the first time, we have now learned that this is not the case. That was actually quite a surprise to us.“ It also illustrates the fact that in vitro systems like cell culture can only to a certain extent represent a natural physiological condition. Consequently, the insights gained in vitro must always be verified in vivo.

Mügen Terzioglu’s findings will change the way we look at proteins and understand their roles in the cell. In particular, a new perspective opens up to better understand the regulation in mitochondrial transcription and translation as well as the stability of the mitochondrial transcripts and their metabolism.

Original publication:
Mügen Terzioglu, Benedetta Ruzzenente, Julia Harmel, Arnaud Mourier, Elisabeth Jemt, Marcela Davila Lopez, Christian Kukat, James B. Stewart, Rolf Wibom, Caroline Meharg, Bianca Habermann, Maria Falkenberg, Claes M. Gustafsson, Chan Bae Park and Nils-Göran Larsson
MTERF1 Binds mtDNA to Prevent Transcriptional Interference at the Light-Strand Promoter but Is Dispensable for rRNA Gene Transcription Regulation
Cell Metabolism - April 02, 2013 (Epub ahead of print: Apr 02, 2013)

Contact:
Author: Dr. Mügen Terzioglu
Max Planck Institute for Biology of Ageing, D-Cologne
E-mail: mugen.terzioglu@age.mpg.de

Press & Public Relations: Sabine Dzuck
Tel.: +49 (0)221 379 70 304
Mobile: +49 (0)151 628 03 539
E-mail: sabine.dzuck@age.mpg.de

Sabine Dzuck | Max-Planck-Institut
Further information:
http://www.age.mpg.de

Further reports about: DNA MPI MTERF1 Max Planck Institute RNA ageing synthetic biology

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>