Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sarcoidosis: surface marker allows new diagnostic approaches

23.10.2015

A team of scientists at the Helmholtz Zentrum München together with colleagues of the Ludwig Maximilians University Munich recently developed a new strategy to determine monocyte subsets involved in diseases. The results published in the journal ‘Blood’ could help facilitating the diagnosis of sarcoidosis and may improve the respective patient management.

Monocytes are white blood cells that are crucial to human immune defense. They are precursor cells of macrophages and dendritic cells and are circulating in the blood until they invade their respective target tissue where they defend the body against exogenous structures. So far, scientist categorized subtypes of monocytes only with regards to the surface markers CD14 and CD16* – however, this might change in the future.


Dr. Thomas Hofer and Dr. Marion Frankenberger

Source: Helmholtz Zentrum München (HMGU)

Surface molecule as new marker

In the current study, the team headed by Prof. Loems Ziegler-Heitbrock was able to show that the analysis of an additional marker molecule called slan allows a more precise determination of monocyte subgroups. The results of the researchers show that this classification might also lead to a better understanding of certain diseases.

Targeting sarcoidosis

To this end Dr. Thomas Hofer and Dr. Marion Frankenberger, scientists of the Comprehensive Pneumology Center (CPC) at Helmholtz Zentrum München, analyzed blood samples of patients suffering from sarcoidosis. This disease, which often leads to damage of the patients’ lungs, is caused by a strong immune reaction and a concomitant formation of nodules in the tissue. The underlying mechanisms are still unclear but scientists are convinced that monocytes play a critical role. “Our data clearly indicate which subtype of the monocytes is involved in the disease”, explains Hofer. “In the patients’ blood we found significant numbers of monocytes, which were positive for CD16 and negative for slan.” According to Hofer, these cells might play a major role in sarcoidosis.

Also a role in brain disease

Moreover, in further experiments the scientist found that the marker slan might also serve to gain insights into a brain disease: “To test the predictive value of our new diagnostic tool, we also analyzed samples of patients suffering from HDLS**, a disease which leads to destruction of neurons of the brain”, said Frankenberger. “Our results show that a clearly definable subgroup of monocytes (CD16 positive/slan positive) was almost absent in the blood of these patients. Therefore we presume that these cells are important for normal brain function”, explains the Co-author.

“With this novel approach we now have a new diagnostic tool and we expect this to have an impact in many areas of medicine”, concludes principle investigator Ziegler-Heitbrock. “In the future we are planning to investigate whether slan might also lead to new insights with regards to other diseases.”

Further information

Background:
* The number of CD16 positive monocytes is increased in many infectious diseases. Since 2010 these proinflammatory cells can be subdivided according to cell surface markers: Classical monocytes (CD14++CD16−), Intermediate monocytes (CD14++CD16+) and Non-classical monocytes (CD14+CD16++). The results of the current study allow for a clear classification of these cells.

** HDLS stands for hereditary diffuse leukoencephalopathy with spheroids. This adult-onset disease affects the brain by degrading the myelin sheath of neurons and leads to the formation of so called spheroids. This leads to a progressive cognitive and motor dysfunction.

The study is the result of a co-operation of the Helmholtz researchers with the Department of Internal Medicine IV, Saarland University Medical Center, with the Asklepios Fachklinik in Muenchen-Gauting and with the Department of Neurology of the Ludwig Maximilians University in Munich.

Original publication:
Hofer, T. et al. (2015). Slan-defined subsets of CD16-positive Monocytes: Impact of granulomatous Inflammation and M-CSF-Receptor Mutation, Blood, DOI: 10.1182/blood-2015-06-651331 http://dx.doi.org/10.1182/blood-2015-06-651331

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches to the prevention and therapy of major common diseases such as diabetes and lung disease. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. The Helmholtz Zentrum München is a partner in the German Center for Diabetes Research. http://www.helmholtz-muenchen.de/en/index.html

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität Clinic Complex and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is a site of the Deutsches Zentrum für Lungenforschung (DZL). http://www.helmholtz-muenchen.de/ilbd/index.html

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Dr. Thomas Hofer, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Ingolstädter Landstr. 1, 85764 Neuherberg - Phone +49 89 3187 1888 - E-mail: hofer@helmholtz-muenchen.de

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: CPC Department Environmental Environmental Health Pneumology Sarcoidosis blood diseases monocytes

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>