Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers scientists identify protein that may have existed when life began

31.08.2018

The primordial peptide may have appeared 4 billion years ago

How did life arise on Earth? Rutgers researchers have found among the first and perhaps only hard evidence that simple protein catalysts - essential for cells, the building blocks of life, to function - may have existed when life began.


Researchers have designed a synthetic small protein that wraps around a metal core composed of iron and sulfur. This protein can be repeatedly charged and discharged, allowing it to shuttle electrons within a cell. Such peptides may have existed at the dawn of life, moving electrons in early metabolic cycles.

Credit: Vikas Nanda/Rutgers University-New Brunswick

Their study of a primordial peptide, or short protein, is published in the Journal of the American Chemical Society.

In the late 1980s and early 1990s, the chemist Günter Wächtershäuser postulated that life began on iron- and sulfur-containing rocks in the ocean. Wächtershäuser and others predicted that short peptides would have bound metals and served as catalysts of life-producing chemistry, according to study co-author Vikas Nanda, an associate professor at Rutgers' Robert Wood Johnson Medical School.

Human DNA consists of genes that code for proteins that are a few hundred to a few thousand amino acids long. These complex proteins - needed to make all living-things function properly - are the result of billions of years of evolution.

When life began, proteins were likely much simpler, perhaps just 10 to 20 amino acids long. With computer modeling, Rutgers scientists have been exploring what early peptides may have looked like and their possible chemical functions, according to Nanda.

The scientists used computers to model a short, 12-amino acid protein and tested it in the laboratory. This peptide has several impressive and important features. It contains only two types of amino acids (rather than the estimated 20 amino acids that synthesize millions of different proteins needed for specific body functions), it is very short and it could have emerged spontaneously on the early Earth in the right conditions.

The metal cluster at the core of this peptide resembles the structure and chemistry of iron-sulfur minerals that were abundant in early Earth oceans. The peptide can also charge and discharge electrons repeatedly without falling apart, according to Nanda, a resident faculty member at the Center for Advanced Technology and Medicine.

"Modern proteins called ferredoxins do this, shuttling electrons around the cell to promote metabolism," said senior author Professor Paul G. Falkowski, who leads Rutgers' Environmental Biophysics and Molecular Ecology Laboratory. "A primordial peptide like the one we studied may have served a similar function in the origins of life."

Falkowski is the principal investigator for a NASA-funded ENIGMA project led by Rutgers scientists that aims to understand how protein catalysts evolved at the start of life. Nanda leads one team that will characterize the full potential of the primordial peptide and continue to develop other molecules that may have played key roles in the origins of life.

With computers, Rutgers scientists have smashed and dissected nearly 10,000 proteins and pinpointed four "Legos of life" - core chemical structures that can be stacked to form the innumerable proteins inside all organisms. The small primordial peptide may be a precursor to the longer Legos of life, and scientists can now run experiments on how such peptides may have functioned in early-life chemistry.

###

Study co-lead authors are John Dongun Kim, postdoctoral researcher, and graduate student Douglas H. Pike. Other authors include Alexei M. Tyryshkin and G.V.T. Swapna, staff scientists; Hagai Raanan, postdoctoral researcher; and Gaetano T. Montelione, Jerome and Lorraine Aresty Chair and distinguished professor in the Department of Molecular Biology and Biochemistry. He is also a resident faculty member at the Center for Advanced Technology and Medicine.

Media Contact

John Cramer
john.cramer@rutgers.edu
848-932-7311

 @RutgersU

http://www.rutgers.edu 

John Cramer | EurekAlert!
Further information:
https://news.rutgers.edu/rutgers-scientists-identify-protein-may-have-existed-when-life-began/20180829#.W4gyjuhKi70
http://dx.doi.org/10.1021/jacs.8b07553

Further reports about: Electrons Molecular Ecology amino acids peptides proteins

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>