Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA research strategy for Europe takes shape

05.03.2009
Research into RNA, a molecule found in every cell of our bodies, could lead to remarkable advances in the treatment of diseases such as cancer and diabetes, a meeting organised by the European Science Foundation was told.

The conference, held the institute of Parasitología y Biomedicina "López-Neyra", CSIC in Granada, Spain, on 23 February 2009, was part of an ESF initiative to develop a coherent strategy for RNA research in Europe in recognition of the potential of RNA to result in new approaches to treating human diseases.

For many years it was believed that RNA’s sole function in cells was to transmit genetic information from DNA during the manufacture of proteins – the cell’s workhorse molecules. However, in recent years it has become clear that RNA has many more sophisticated functions and that there are more types of RNA than previously known.

The field exploded into activity with the discovery in 1998 by US researchers Andrew Fire and Craig Mello of a phenomenon called RNA interference, meaning that genes can be ‘silenced’ by RNA. This discovery, for which Fire and Mello were awarded the Nobel Prize in 2006, revolutionised the way scientists think about how genetic information is controlled in cells, and has opened the possibility of using gene silencing as a therapy where rogue genes cause disease.

“Research into RNA has great promise for both basic science and biotechnology and medicine,” said the meeting’s chairman, Professor Lars Thelander of Umeå University in Sweden. “Most pharmaceutical companies now have RNA projects, but the field is still in its early days and it could be another ten years before we see products appearing in the clinics.”

Professor Thomas Cech of the Howard Hughes Medical Institute in the US told the meeting how he discovered that RNA could also act as a biological catalyst – something that it was previously thought was the preserve of proteins representing a wonderful example of the versatility of RNA function. The discovery gave rise to new ideas about how life on Earth might have started and resulted in Professor Cech being awarded a Nobel Prize in 1989.

The Granada “Consensus Conference” was organised by ESF as part of a ‘Forward Look’ entitled ‘RNA World: a new frontier in biomedical research’ aimed at developing a strategy for research in RNA over the next ten years. Three earlier workshops had examined various aspects of RNA research to identify where gaps in our knowledge lie and what is required to plug these gaps and fulfil the promise that RNA holds. Forward Looks are a key part of ESF’s work, examining important areas of science and technology in consultation with leading scientists and policy makers to develop a strategic framework for research.

A Forward Look report on RNA research is due to be published later this year, detailing the scientific questions that need to be answered and giving politicians and policy makers the information they need when deciding where to direct research funding to ensure that Europe remains globally competitive in this key area of emerging science.

Sofia Valleley | EurekAlert!
Further information:
http://www.esf.org/rnaworld

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>