Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retracing Citrus’ Earliest Roots to Find Clues for Healthier Future

11.06.2014

That orange you’re enjoying may have been grown in Florida, but its deepest ancestral roots stretch back more than 5 million years, all the way to two wild citrus species from Southeast Asia.

University of Florida scientists led an international research team that analyzed the genome sequences of 10 diverse citrus varieties for the first time.

Their findings, published online Sunday by the journal Nature Biotechnology, could help the citrus industry find and deploy genes for resistance to citrus greening, a bacterial infection devastating crops in North America.

Fred Gmitter, a UF Institute of Food and Agricultural Sciences faculty member, led the team of researchers from the United States, France, Italy, Spain and Brazil as part of a decade-long project to sequence and understand citrus genomes.

... more about:
»Citrus »crops »genes »genomes »resistance »sequences »species »sweet »varieties

They analyzed and compared the genome sequences of sweet and sour oranges, along with several important mandarin and pummelo varieties. By understanding the relationships between the various cultivated species they describe as having “very narrow genetic diversity,” the researchers hope to enable genetic modifications and traditional breeding, which could lead to crops more resistant to disease and environmental stress, as well as better flavor and health-promoting benefits.

“Citrus has incestuous genes - nothing is pure,” said Gmitter, who is based at UF’s Citrus Research and Education Center in Lake Alfred. “Now that we understand the genetic structure of sweet orange, for example, we can imagine reproducing early citrus domestication using modern breeding techniques that could draw from a broader pool of natural variation and resistance.”

New citrus trees are almost always produced by grafting, a method of propagation that binds the fruit bearing part of one tree to the root system of another. That produces trees that more quickly bear genetically identical, uniform, high quality fruit. But because of that uniformity, if one tree is susceptible to disease, they all are.

Citrus is the world’s most widely cultivated fruit crop. In Florida, it is a $9 billion industry, employing 75,000. But it is under attack from a tiny bug, the Asian citrus psyllid, which sucks on leaf sap and leaves behind the citrus greening bacteria.

The disease, which renders fruit unsuitable for sale and eventually kills trees, could wipe out the industry in the next decade if a viable treatment is not found.

UF/IFAS researchers have attempted everything from trying to eradicate the psyllid to breeding citrus rootstocks that show better greening resistance. Current control methods include removing and destroying infected trees, controlling the psyllid, and providing additional nutrition in an attempt to keep infected trees productive.

Citrus was first domesticated in Southeast Asia thousands of years ago before spreading throughout Asia, Europe, and the Americas via trade.

One of the two wild species, Citrus maxima, gave rise to today’s cultivated pummelo, the largest citrus fruit, which can often weigh 2 to 4 pounds or more. The small, easily peeled mandarins were, in contrast, found to be genetic mixes of a second species (Citrus reticulata, the ancestral mandarin species) and pummelo. Sweet orange, the world’s most widely grown citrus variety, was found to be a complex hybrid, with mixed bits and pieces of the mandarin and pummelo genomes. Seville, or sour orange, commonly used in marmalade, is a simple hybrid between the two ancestral species.

The U.S. Department of Energy’s Joint Genome Institute, Genoscope in France, the Institute for Genomic Applications in Italy, and 454 Life Sciences, a Roche company, contributed to the citrus genome project.

Kimberly Moore Wilmoth | newswise
Further information:
http://www.ufl.edu

Further reports about: Citrus crops genes genomes resistance sequences species sweet varieties

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>