Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock secret to mysterious movement disorder

25.11.2011
Neurodegenerative diseases represent one of the greatest challenges in our aging society. Yet research into these illnesses is difficult because of the limited availability of human brain tissue.

Fortunately, scientists at the Life & Brain Research Center and the Clinic for Neurology at the University of Bonn have discovered a way to work around the problem. By taking skin cells from patients with a genetic movement disorder and reprogramming them into so-called induced pluripotent stem cells, researchers were able to create functional neurons that allowed them to investigate the causes of the disease. Their results will be published in the journal Nature.

The focus of the Bonn study is Machado-Joseph disease, which affects people’s ability to coordinate movement. First identified among Portuguese descendants living on the Azores, today it represents the most frequent dominantly inherited cerebellar ataxia in Germany. Most patients first develop symptoms, which include difficulty walking and other neurological difficulties, between the ages of 20 and 40. The cause of the disorder is a repeating sequence in the ATXN3 gene, which causes build-up of the Ataxin protein, damaging neurons in the brain. Before the study, no one knew why the disease affected only nerve cells and what triggered the abnormal protein build-up.

“Master Cells” derived from patient skin samples

To study the disease process on a molecular level, the stem cell researcher Dr. Oliver Brüstle and his team at the University of Bonn’s Institute for Reconstructive Neurobiology derived induced pluripotent stem cells (iPS cells) from small samples of patient skin. iPS cells are cells restored to their early, undifferentiated state. Once “reprogrammed,” these “master” cells divide continuously and can transform into any cell of the body. In a subsequent step, Brüstle and his team converted iPS cells into brain stem cells, creating an ever-ready supply of neurons for their investigations.

A special feature of the neurons is that they stem from affected patients. Carrying the same genetic mutations as the patients, these neurons can serve as a cellular model for Machado-Joseph disease. “This method allows us to investigate diseased cells which we otherwise couldn’t access, almost as if we had put the patient’s brain in a Petri dish,” says Dr. Philipp Koch, a long-time colleague of Brüstle’s and one of the study’s primary authors. Together with Dr. Peter Breuer of the Clinic for Neurology at Bonn’s University Hospital, Koch sent electrical currents through the cultured neurons. The researchers showed that the formation of protein aggregate has a direct relationship with a neuron’s electrical activity. “Playing a key role is the enzyme calpain, which is activated by the increased calcium levels in stimulated neurons,” says Breuer. “This newly discovered mechanism explains why Machado-Joseph disease only affects neurons,” Brüstle explains.

Reprogramed neurons as test objects for new drugs

“The study shows the potential of this special class of stem cells for neurological research,” says Prof. Dr. Thomas Klockgether, the clinical director of the German Center for Neurodegenerative Diseases (DZNE) and director of the Clinic for Neurology at the Bonn’s University Hospital. Klockgether’s team closely collaborated with Brüstle and his researchers. For Brüstle, this was reason enough to start thinking about new organizational structures: “We need interdisciplinary departments in which scientists from stem cell biology and from molecular pathology work side by side.” Prof. Dr. Dr. Pierluigi Nicotera, the scientific director and chairman of the executive board of DZNE, endorses this view. “Cooperative structures are of great interest to DZNE,” he stresses. “Reprogramed stem cells show enormous potential for our understanding of the pathology of neurodegenerative diseases.”

In the future, Brüstle and his colleagues from the Life & Brain Research Center plan to use reprogrammed neurons to develop treatments for neurological diseases.

Publication:
Koch, P., P. Breuer, M. Peitz, J. Jungverdorben, J. Kesavan, D. Poppe, J. Doerr, J. Ladewig, J. Mertens, T. Tüting, P. Hoffmann, T. Klockgether, B. O. Evert, U. Wüllner, O. Brüstle (2011): Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature DOI: 10.1038/nature10671
Contact:
Dr. Oliver Brüstle
Institute for Reconstructive Neurobiology
LIFE & BRAIN Center
University of Bonn
Tel: +49 (0) 228/6885-500
Email: brustle(at)uni-bonn.de

Daniel Bayer | idw
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>