Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers observe ultrafast processes of single molecules in liquid helium for the first time

23.03.2020

Graz University of Technology researchers describe in Physical Review Letters how a molecule moves in the protective environment of a quantum fluid.

Markus Koch, head of the research group Femtosecond Dynamics at the Institute of Experimental Physics at TU Graz, and his team develop new methods for time-resolved femtosecond laser spectroscopy to investigate ultrafast processes in molecular systems.


The research group Femtosecond Dynamics of the Institute of Experimental Physics has once again achieved a success in quantum physics.

© Lunghammer - TU Graz


Markus Koch, head of the research group Femtosecond Dynamics at the Institute of Experimental Physics at TU Graz is investigating ultrafast processes in molecules.

© Lunghammer - TU Graz

In 2018 the group demonstrated for the first time that photo-induced processes can be observed inside a helium nanodroplet, a nanometer-sized droplet of superfluid helium that serves as a quantum solvent.

For their investigations, the researchers placed a single indium atom inside the droplet and analysed the reaction of the system with the pump-probe principle.

The atom was excited with an ultrashort laser pulse, triggering the rearrangement of the helium environment within femtoseconds (10-15 seconds). A time-delayed second laser pulse probed this development and provided information on the behavior of the system.

Successful next step

Using the same technique, Koch and his colleagues Miriam Meyer, Bernhard Thaler and Pascal Heim, visualized the movement of single, isolated molecules inside a helium droplet for the first time.

The researchers formed an indium dimer molecule inside a helium droplet by loading it successively with two indium atoms. They then triggered a vibration in the molecule by photoexcitation and observed the movement of the nuclei in real time with the same pump-probe technique.

The researchers consider two aspects of the experiment as particularly important: First, it demonstrates that such experiments are able to observe ultrafast intramolecular processes - i.e. processes that occur within an excited molecule.

Helium has little influence on embedded molecules

Second, the group discovered that the influence of superfluid helium on molecular vibrations is significantly weaker than with conventional solvents, such as water or methanol.

Intramolecular processes are usually influenced by interactions with the environment and in conventional solvents this interaction is so strong that intramolecular processes cannot be observed, as Bernhard Thaler explains: "The quantum fluid helium, which has a temperature of only 0.4 K (note: minus 272.75 degrees Celsius), is truly special, as the perturbation on the embedded molecule is very low. Additionally, fragile molecules, which often break apart in other techniques, are stabilized due to the cooling mechanism and can now be investigated.”

Markus Koch wants to extend the method to complex molecules

"We see great potential in helium nanodroplets because they offer wonderful opportunities for creating molecular systems," said Koch, explaining why he and his team develop this method for femtosecond studies. In the next step, the Femtosecond Dynamics group aims for more complex systems.

"The structure of indium molecules, which we used as a model system, is very simple but in the future we want to look at technologically relevant molecules, which are more complex. I consider this as promising approach to molecular engineering, where future materials are developed by manipulating the quantum behavior of their molecular constituents."

This research area is anchored in the Field of Expertise “Advanced Materials Science”, one of five strategic foci of TU Graz. Participating researchers are members of NAWI Graz Physics.

Further information on the original publication "Long-lived nuclear coherences inside helium nanodroplets" can be found in the online magazine Physics of the American Physical Society, which dedicates a focus story to the paper: https://physics.aps.org/articles/v13/4

Wissenschaftliche Ansprechpartner:

Markus Koch
Assoc.Prof. Dipl.-Ing. Dr.techn.
TU Graz | Institute of Experimental Physics
Rechbauerstrasse 16, 8010 Graz
Phone: +43 316 873 8161
markus.koch@tugraz.at

Originalpublikation:

Long-lived nuclear coherences inside helium nanodroplets
Bernhard Thaler, Miriam Meyer, Pascal Heim, Markus Koch*
Physical Review Letters 124, 115301 DOI: https://doi.org/10.1103/PhysRevLett.124.115301

Weitere Informationen:

https://www.tugraz.at/en/institutes/iep/research/femtosecond-dynamics/ (research group Femtosecond Dynamics at the Institute of Experimental Physics at TU Graz)
https://www.tugraz.at/en/tu-graz/services/news-stories/tu-graz-news/singleview/a... (first time of observed photo-induced processes)
https://www.nawigraz.at/en/ (NAWI Graz)

Mag. Christoph Pelzl, MSc | Technische Universität Graz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

Im Focus: Shaking off the correlated-electron traffic jam

An international team of researchers from Switzerland, Germany, the USA and Great Britain has uncovered an anomalous metallic behavior in an otherwise insulating ceramic material. The team used ultrashort light pulses with a wide range of colors to watch what happens when the insulating quasi two-dimensional material La2CuO4 (LCO) becomes a three-dimensional metal through laser irradiation. Surprisingly, the researchers found that specific vibrations of the crystal lattice are involved in this metallization process. A careful computational investigation revealed that the same vibrations that show up in this ultrafast movie can destabilize the insulating behavior all by themselves.

The condensed-matter physics world was shaken up when high-temperature superconductivity was reported in a copper oxide material in 1986 by Alex Müller and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

70th Lindau Meeting: 660 young scientists from around 100 countries experience first “Lindau Moment" today

02.03.2020 | Event News

 
Latest News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

On the trail of organic solar cells’ efficiency

20.03.2020 | Power and Electrical Engineering

Graphene underpins a new platform to selectively ID deadly strains of bacteria

20.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>