Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find the mechanism that forms cell-to-cell catch bonds

06.06.2014

Certain bonds connecting biological cells get stronger when they’re tugged.

Those bonds could help keep hearts together and pumping; breakdowns of those bonds could help cancer cells break away and spread.


This ribbon diagram shows a pulling force applied to two common adhesion proteins called cadherins (red and blue) bound together in an X-shape. The green spheres represent calcium ions while the cyan and orange stick figures correspond to amino acids brought together as the force is applied. The hydrogen bonds that form between the amino acids create catch bonds that get stronger when pulled. Larger image. Image courtesy of Sanjeevi Sivasankar

Those bonds are known as catch bonds and they’re formed by common adhesion proteins called cadherins. Sanjeevi Sivasankar, an Iowa State University assistant professor of physics and astronomy and an associate of the U.S. Department of Energy’s Ames Laboratory, has described catch bonds as “nanoscale seatbelts. They become stronger when pulled.”

But how does that happen? How can bonds get stronger under force? Sivasankar and his research team have found long-lived, force-induced hydrogen bonds are the answer. A paper describing their findings, “Resolving the molecular mechanism of cadherin catch bond formation,” has just been published online by Nature Communications. Sivasankar is the corresponding author.

Co-authors are Kristine Manibog, an Iowa State graduate student in physics and astronomy and a student associate of the Ames Laboratory; Hui Li, of the Suzhou Institute of Biomedical Engineering and Technology of the Chinese Academy of Sciences in Suzhou New District, China; and Sabyasachi Rakshit, of the Indian Institute of Science Education and Research in Mohali, India. Li and Rakshit are former postdoctoral researchers in Sivasankar’s laboratory.

The team’s research was supported by grants from the American Cancer Society and the American Heart Association. Sivasankar said strong cell-to-cell bonds are important to heart health and fighting cancer. He said the bonds connecting heart cells have to withstand constant mechanical forces. And, in some cancers, he said bonds no longer resist forces, allowing cancer cells to detach and spread.

To find the mechanism behind the strong ties created by catch bonds, Sivasankar’s research team began with molecular dynamics and steered molecular dynamics computer simulations based on data from previous experiments. They found that two rod-shaped cadherins bound together in an X-shape (called an X-dimer) form catch bonds when pulled and in the presence of calcium ions.

The calcium ions keep the cadherins rigid and ordered while the pulling brings parts of the proteins closer together. All of that allows a series of hydrogen bonds to form. These long-lived, force-induced hydrogen bonds lock the X-dimers into tighter contact. Sivasankar said the researchers followed up the simulations with single-molecule experiments using atomic force microscopy.

The experiments confirmed that cadherin X-dimers, when pulled and exposed to high calcium ion concentrations, formed catch bonds. Take away the force or the calcium ions, and catch bond formation was eliminated.

All of this, Sivasankar said, helps explain the biophysics of cell-to-cell adhesion. And that’s important to all of us. “Robust cadherin adhesion,” the researchers wrote in their paper, “is essential for maintaining the integrity of tissue such as the skin, blood vessels, cartilage and muscle that are exposed to continuous mechanical assault.”

Sanjeevi Sivasankar | Eurek Alert!
Further information:
http://www.news.iastate.edu/news/2014/06/05/catchbonds

More articles from Life Sciences:

nachricht How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration
14.11.2018 | Technische Universität München

nachricht NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure
14.11.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>