Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Gene Critical to Sense of Smell in Fruit Fly

20.01.2012
Fruit flies don't have noses, but a huge part of their brains is dedicated to processing smells. Flies probably rely on the sense of smell more than any other sense for essential activities such as finding mates and avoiding danger.
UW-Madison researchers have discovered that a gene called distal-less is critical to the fly's ability to receive, process and respond to smells.

As reported in the current issue of the Proceedings of the National Academy of Sciences, the scientists also found evidence that distal-less is important for generating and maintaining self-renewing stem cells in the large brain structure that's responsible for processing odors and carrying out other important duties.

The corresponding gene in mammals and humans, called Dlx, is known to be important in the sense of smell. The Dlx gene has also been implicated in autism and epilepsy. By studying how distal-less works in fruit fly neurons, the scientists also hope to expand understanding of Dlx.

"We're really interested in knowing at a very fundamental level what distal-less is doing in the fly olfactory system and how it's doing it," says senior author Dr. Grace Boekhoff-Falk, associate professor of cell and regenerative biology at the University of Wisconsin School of Medicine and Public Health. "We're also hoping that what we learn in flies can give us a better understanding of how Dlx works in vertebrates, including humans."

Studying distal-less is much easier than studying Dlx, she adds, partly because mice and humans have six Dlx genes while flies have only one distal-less.

Odors enter fruit flies through nerve cells designed to receive smells - olfactory receptor neurons. From receptor neurons, projection neurons relay olfactory information to the large brain structure called the mushroom body (MB), which then triggers the animals to move in the right direction - toward the fragrance of food, for example, or away from the odor of a predator.

Boekhoff-Falk and her group have studied distal-less (dll) for years, previously investigating its role in the fruit fly hearing system and its limb development.

The current studies of the olfactory system were done in larvae rather than the more typically studied adult flies. Dissecting the younger, smaller flies demands the steadiest of hands, but the payoff is that larvae offer a substantially simpler view of brain development and wiring as well as insights into events occurring extremely early in development.

The researchers found dll was required for the development and growth of multiple cell types in the olfactory system, including those that receive, relay and process olfactory information. Dll must work for normal olfactory behavior to occur in larvae. And when dll is defective, the sense of smell is not present.

Zeroing in on the MB, the UW researchers also discovered an essential relationship between dll and the longest-living and most prolific neural stem cells found in fruit flies.

Boekhoff-Falk's team found that in flies with a mutated version of dll, these neural stem cells failed to proliferate. No other scientists have observed such strong defects in these cells at such an early stage.
The scientists identified markers that will allow them to learn how the stem cells decide which specialized cells they will become and how their growth may be regulated.

"We want to identify the niche, or the stem cell microenvironment, and the cells there that supply growth inputs needed to keep the stem-ness of the cells," she says.

Boekhoff-Falk believes the parallels to human stem cell biology may be strong.

"Our model may be useful for further analysis of how this gene regulates stem cells," she says.

The experiments also opened the door to a better understanding of the evolution of the sense of smell.

"The prevailing view is that fly and mammal olfactory systems evolved independently, multiple times over history," says Boekhoff-Falk, who has a long-standing interest in evolutionary biology. "But our work challenges that view. We think that when it comes to the olfactory system there may be a common ancestor shared by flies and mammals."

Earlier work by others had shown that the "wiring diagrams," or the arrangements of nerves, involved in olfaction in flies and mammals are similar. However, this was attributed to convergent evolution, the process by which unrelated organisms independently evolve similar traits as a result of having to adapt to similar environments, rather than shared ancestry.

The new work from Boekhoff-Falk's group suggests that the underlying genetic mechanisms used in the developing olfactory systems of flies and mammals are similar.

"This supports the idea that the last common ancestor already had some form of olfactory system," she says, "and that the overall architecture and key elements of the underlying genetics have been well conserved over time."

The long-shared similarity makes studies of fly genes in the olfactory system more relevant to human disease than previously thought, she says.

All told, the findings make the fruit fly a powerful model for investigating dll function.

"We think these studies have the potential to be highly relevant to human biology," says Boekhoff-Falk.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>