Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find controlling element of Huntington’s disease

26.02.2013
Molecular troika regulates production of harmful protein
A three molecule complex may be a target for treating Huntington’s disease, a genetic disorder affecting the brain. This finding by an international research team including scientists from the German Center for Neurodegenerative Diseases (DZNE) in Bonn and the University of Mainz was published today in the online journal “Nature Communications”. The report states that the so-called MID1 complex controls the production of a protein which damages nerve cells.

Huntington’s disease, also known as Huntington’s chorea, is a hereditary brain disease causing movement disorders and dementia. In Germany, there are about 8,000 patients affected by Huntington’s disease, with several hundred new cases arising every year. The disease usually manifests between the ages of 35 and 50. To date, it is incurable and inevitably leads to death. It is caused by a specific genetic defect: In the patient’s DNA, which is the carrier of genetic information, there are multiple copies of a certain motif. “Repeats like this are also found in healthy people. However, in cases of Huntington’s disease, these sequences are longer than usual,” explains Dr. Sybille Krauss from the DZNE in Bonn.

The long DNA sequences in Huntington’s disease lead to changes in a certain protein called “Huntingtin”. The DNA is like an archive of blueprints for proteins. Errors in the DNA therefore result in defective proteins. “Huntingtin is essential for the organism’s survival. It is a multi-talent which is important for many processes,” emphasises Krauss. “If the protein is defective, brain cells may die.“

In the spotlight: protein synthesis

In the current study, the scientists around Sybille Krauss and the Mainz-based human geneticist Susann Schweiger took a closer look at a critical stage of protein production – translation. At this step, a copy of the DNA, the so-called messenger RNA, is processed by the cell’s protein factories. In patients with Huntington’s disease, the messenger RNA contains an unusually high number of consecutive CAG sequences – CAG representing the building plan for the amino acid glutamine.

These repetitive sequences have a direct consequence: more glutamine than normal is built into Huntingtin, which is therefore defective. Sybille Krauss and her colleagues have now identified a group of three molecules, which regulate the production of this protein. “We were able to show that this complex binds to the messenger RNA and controls the synthesis of defective Huntingtin,” says Krauss. When the scientists reduced the concentration of this so-called MID1 complex in the cell, production of the defective protein declined.
“If we could find a way of influencing this complex, for example with pharmaceuticals, it is quite possible that we could directly affect the production of defective Huntingtin. This kind of treatment would not just treat the symptoms but also the causes of Huntington’s disease,” says Krauss.

Background:

Three molecules come together

The complex consists of MID1, from which it gets its name, and the proteins PP2Ac and S6K. “Every single one of these proteins is known to be important for translation. We have discovered that in the specific case of Huntington’s disease, they together bind to the CAG sequences. This was previously unknown. We also found that binding increases with repeat lengths,” says Krauss. “In sequences of normal length, we found only weak binding or none at all.”

The Bonn-based molecular biologist and her colleagues investigated the effect of the MID1 complex and the interaction between its components in a series of elaborate laboratory experiments. “This project took several years of research work,” says Krauss. Along with biochemical procedures, the scientists used cell cultures and analysed proteins from the brains of mice. The mice’s genetic code had been modified in such a way that it contained elongated CAG-repeats as it is typical for Huntington’s disease.
From previous studies it was already known that the protein MID1 tends to bind messenger RNAs. The scientists were now able to show that MID1 also attaches to messenger RNAs with excessively long CAG sequences. Furthermore, experiments showed that PP2Ac and S6K also bound the RNA in the presence of MID1. However, if the MID1 was depleted, this binding did not occur. “From this, we can conclude that these three proteins form a molecular complex, which binds to the RNA. MID1 is a key component. It actually seems to keep together its binding partners,” Krauss comments on the results of the experiments.

Complex controls protein production

The researchers were also able to prove that the MID1 complex controls the translation of RNA with excessively long CAG sequences. For this, they investigated various cell cultures. The cells produced either normal Huntingtin or – due to excessively long sequences in their DNA – a defective version of this protein. The scientists reduced the occurrence of MID1 inside the cells using a procedure known as “knock-down”. The elimination of this protein, which is a major part of the MID1 complex, had direct consequences: the production of defective Huntingtin declined. “However, it did not affect the production of normal Huntingtin,” emphazises Krauss. “This further proves that the MID1 complex specifically targets RNAs with excessively long CAG sequences.”

Highly specific

The Bonn-based molecular biologist sees this specific influence as a chance to treat Huntington’s disease: “The MID1 complex is a promising target for therapy. It indicates a possibility to suppress the production of defective Huntingtin only, while not affecting the production of normal Huntingtin. This is of particular significance, because the normal protein is also being produced in the patients' bodies and it is important for the organism.”

A suitable active substance has yet to be found, says Krauss. However, the next developments are in sight: “We now want to test potential substances in the laboratory,” she says.

Original Publication
„Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex“, Sybille Krauß, Nadine Griesche, Ewa Jastrzebska, Changwei Chen, Désiree Rutschow, Clemens Achmüller, Stephanie Dorn, Sylvia M. Boesch, Maciej Lalowski, Erich Wanker, Rainer Schneider, Susann Schweiger, Nature Communications, DOI: 10.1038/ncomms2514 - http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2514.html

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en/about-us/public-relations/meldungen/2013/press-release-no-7.html

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>