Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover mechanism that limits scar formation

11.06.2010
Researchers from the University of Illinois at Chicago have discovered that an unexpected cellular response plays an important role in breaking down and inhibiting the formation of excess scar tissue in wound healing.

Their study was published online this week in Nature Cell Biology.

When an organism suffers severe injury, specialized cells are "recruited" to the wound site that rapidly produce extracellular matrix proteins such as collagen to provide structural support to the tissue, according to Lester Lau, professor of biochemistry and molecular biology at the UIC College of Medicine and principal investigator in the study.

Joon-Il Jun, a postdoctoral fellow working in Lau's lab and first author of the paper, found that fibroblasts recruited to the site of skin wounds were entering a state of reproductive dormancy, or cell-cycle arrest, called senescence.

This was quite unexpected, Jun said. Until now senescence was believed to occur in cells that suffered DNA damage -- to prevent them from proliferating and, possibly, becoming cancerous.

He discovered that the senescent fibroblasts were making proteins that degraded the extracellular matrix and accelerated the breakdown of collagen. The senescent cells also stopped making collagen.

"The accumulation of senescent cells in the wound has the biological effect of inhibiting the formation of excess scar tissue," Jun said.

Jun also discovered that a protein called CCN1 is responsible for turning on the senescent state in fibroblasts. He was able to show that in mice with a mutated, non-functional form of CCN1, the fibroblasts at the site of a skin wound did not become senescent, and the wound developed excessive scar tissue.

Further, Jun was able to "rescue" the mutated mice by applying CCN1 protein topically to the skin wound, triggering fibroblast senescence and limiting the formation of scar tissue.

The discovery that senescence is a normal wound-healing response in the skin; that senescence in the wound serves an anti-fibrotic function; and that CCN1 is the critical protein that controls this process may prove important in understanding a wide range of pathological conditions related to tissue scarring, said Lau.

"For example, chronic injury to the liver from a number of causes, including viral infections, alcoholism, diabetes and obesity, leads to fibrosis and may progress to cirrhosis," Lau said. "After a heart attack, accumulation of scar tissue in the heart impairs its ability to pump efficiently."

The ability to control the formation of scar tissue, or fibrosis, has important implications for future therapies for treating wound-healing disorders, including organ damage where functional tissue is replaced with scar tissue, Lau said.

The study was supported by grants from the National Institutes of Health.

For more information about UIC, visit www.uic.edu

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>