Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover genetic differences between lethal and treatable forms of leukemia

08.01.2010
Epigenetic diagnosis and therapies, a new strategy for treating cancer

A tumor's genetic profile is often useful when diagnosing and deciding on treatment for certain cancers, but inexplicably, genetically similar leukemias in different patients do not always respond well to the same therapy. Weill Cornell Medical College researchers believe they may have discovered what distinguishes these patients by evaluating the "epigenetic" differences between patients with acute myeloid leukemia (AML).

In recent years it has been appreciated that there are additional chemical codes in addition to DNA sequence that control the behavior of normal and malignant cells. These additional codes are called "epi"genetic since they are contained outside of the DNA sequence.

The investigators have concluded that much of the inter-patient difference in leukemia cell behavior is dependent on a patient's specific epigenetic alterations. These results are expected to lead to tailored cancer therapies for patients who fall within the different epigenetically defined cancer subtypes.

The promising findings are published today in the journal Cancer Cell.

To make their conclusions, Dr. Ari Melnick, the study's senior author and associate professor of medicine from the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell Medical College, and colleagues studied a specific epigenetic marker called DNA methylation, which plays a critical role in controlling gene expression.

They examined the DNA methylation patterning of 14,000 genes in 344 patients diagnosed with AML. By grouping these patients according to their DNA methylation profile, Dr. Melnick and his team were able to separate patients into 16 different groups. Five of these groups defined completely new AML subtypes that shared no other known feature, besides the newly discovered methylation similarities.

"The epigenetic difference between the AML subtypes may play a critical role in determining the responsiveness of the disease to therapy," says Dr. Melnick.

Traditionally, AML patients are treated with first-line chemotherapy drugs. If they fail, patients are classified as having a more severe and difficult-to-treat disease, and are then given a more aggressive therapy, like a bone marrow transplant. Being able to tell which patients are most likely to fail standard treatments could lead to the administration of more precise therapies at the outset of treatment.

They also concluded that a set of 15-gene DNA methylation biomarker was highly predictive of overall patient survival. "The findings have the potential to tell physicians whether or not a patient has a relatively easy or difficult disease to treat, and tailor a patient's therapy accordingly," explains Dr. Melnick. "This saves time trying therapies that will eventually prove to have no effect."

In addition, the investigators discovered a set of 45 genes that are almost universally methylated in AML patients. Methylation of these genes was far more common than any genetic mutation associated with AML, and could provide new ways to more effectively therapeutically target AML in the future.

"Investigators from the Sackler Center at Weill Cornell are leaders in the field of decoding epigenetic information from human tumors and ascertaining their clinical impact," says Dr. Andrew I. Schafer, chairman of the Department of Medicine at NewYork-Presbyterian Hospital/Weill Cornell Medical College. "Such findings will lead to the development of new therapies that give hope to cancer patients who are now without effective treatment."

Collaborators on this study include Maria E. Figueroa, Yushan Li, Xutao Deng, Paul J. Christos, Lucy Skrabanek, Fabien Campagne and Madhu Mazumda, all from Weill Cornell; Elizabeth Schifano and James Booth, from Cornell Univeristy, Ithaca, New York; Sanne Lugthart, Claudia Erpelinck-Verschueren, Peter J.M. Valk, Wim van Putten, Bob Löwenberg and Ruud Delwel from Erasmus University Medical Center, Rotterdam, The Netherlands; and John M. Greally from Albert Einstein College of Medicine, New York.

This study was supported by a Translational Research grant from the Leukemia and Lymphoma Society to Drs. Melnick and Delwel.

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences of Weill Cornell Medical College brings together a multidisciplinary team of scientists for the purpose of catalyzing major advances in medicine. By harnessing the combined power of experimental approaches rooted in the physical and biological sciences, Sackler Center investigators can best accelerate the pace of discovery and translate these findings for the benefit of patients with various medical conditions including but not limited to cancer.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Affiliated with NewYork-Presbyterian Hospital and Methodist Hospital in Houston, Weill Cornell is one of only two medical colleges in the country with dual hospital affiliations.

Andrew Klein | EurekAlert!
Further information:
http://www.med.cornell.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>