Researchers Discover New Way to Design Metal Nanoparticle Catalysts

But previous attempts to design these nanoparticles by changing their shape have failed because the structures are unstable and will revert back to their equilibrium shape.

Now, researchers at Northwestern University's Institute for Catalysis in Energy Processing have discovered a new strategy for fabricating metal nanoparticles in catalysts that promises to enhance the selectivity and yield for a wide range of structure-sensitive catalytic reactions.

The team, led by Laurence D. Marks, professor of materials science and engineering at the McCormick School of Engineering and Applied Science, discovered that they could design nanoparticles by designing the particle’s support structure.

“Instead of trying to engineer the nanoparticles, we’ve engineered the substrate that the nanoparticle sits on,” Marks said. “That changes what faces are exposed.” Their results were published in February in the journal Nano Letters.

This solution was a bit of a discovery: the team created the nanoparticle samples, discovered that they didn’t change their shape (as the laws of thermodynamics caused previously designed nanoparticles to do), then set out figuring how it worked. It turns out that epitaxy — the relationship between the position of the atoms in the nanoparticle and the position of the atoms on the substrate — was more important to design than previously thought.

The team is currently testing the nanoparticles in a catalytic reactor, and early results look promising, Marks says. The nanoparticles appear to be stable enough to survive the rigors of long-term use as catalysts.

“It opens the door to designing better catalysts,” Marks said. “This method could be used with a variety of different metal nanoparticles. It’s a new strategy, and it could have a very big impact.”

The Nano Letters paper is titled “Oriented Catalytic Platinum Nanoparticles on High Surface Area Strontium Titanate Nanocuboids.” The authors of the paper are James A. Enterkin (first author), Kenneth R. Poeppelmeier and Laurence D. Marks from Northwestern.

The Northwestern University Institute for Catalysis in Energy Processing, funded through the US Department of Energy, Office of Basic Energy Science, supported the research.

Media Contact

Megan Fellman EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors