Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how a mutated protein outwits evolution and fuels leukemia

21.06.2013
Findings suggest a potent new therapeutic target for certain types of cancer

Scientists have discovered the survival secret to a genetic mutation that stokes leukemia cells, solving an evolutionary riddle and paving the way to a highly targeted therapy for leukemia.

In a paper published today in Cell, researchers at NYU Langone Medical Center describe how a mutated protein, called Fbxw7, behaves differently when expressed in cancer cells versus healthy cells. "Fbxw7 is essential for making blood cells, so the big mystery is why a mutation on a gene so important for survival would persist," says lead author Iannis Aifantis, PhD, chair of pathology at NYU Langone Medical Center and an Early Career Scientist at Howard Hughes Medical Institute. "What we've found is that the mutation affects cancerous cells but not healthy cells."

The Fbxw7 protein regulates the production of so-called hematopoietic stem cells, precursors that give rise to all types of blood cells. Without Fbxw7, the body loses the ability to produce blood and eventually succumbs to anemia. Scientists are only beginning to understand why mutated Fbxw7 appears in a significant portion of human tumors, including gastric, prostate, and some breast cancers. The mutation is especially prevalent in T-cell acute lymphoblastic leukemia, or T-ALL, a rare but lethal type of pediatric leukemia that causes the over-production of immature white blood cells.

In their experiments, Dr. Aifantis, working in collaboration with graduate student Bryan King and others, began by introducing mutated Fbxw7 into healthy blood stem cells in mice. "We thought the mutation would induce anemia, just as it does when Fbxw7 is deleted," says Dr. Aifantis. But to the researchers' surprise, nothing happened—the stem cells continued to manufacture blood cells.

When the researchers then introduced in mice the mutated Fbxw7 into leukemic blood stem cells—those that overproduce white blood cells and cause leukemia—the cancer accelerated. "We found that the mutation made leukemia stem cells much more aggressive," Dr. Aifantis says.

In follow-up experiments, the researchers showed that Fbxw7 binds to and degrades a protein called Myc, which fuels leukemic stem cells, and has long been associated with many other cancers and the recurrence of cancer after treatment. When Fbxw7 is mutated, Myc is left unchecked, they found, and the population of cancer stem cells swells. This insight also helps explain why healthy blood stem cells seem to "ignore" mutated Fbxw7. Unlike leukemic stem cells, healthy blood stem cells typically lie dormant until the body requires an emergency supply of blood and they rarely express Myc. "Normal blood stem cells express very little Myc because they are not cycling. A mutation does not affect the substrate because the substrate does not exist," says Dr. Aifantis. "Leukemia stem cells, however, do express Myc and Fbxw7 mutations increase its abundance."

The researchers then wondered if eliminating Myc could potentially block leukemia. Indeed, deleting the Myc gene in mice with leukemia depleted leukemic stem cells and stopped the growth of tumors. They achieved the same results in mice and human cell and bone marrow samples of T-ALL using a new class of cancer drug called a BET inhibitor that blocks Myc. "We found that the BET inhibitor could actually kill leukemia stem cells. And without stem cells, the leukemia simply cannot grow," says Dr. Aifantis.

The researchers believe they can use the BET inhibitor to target pediatric and adult T-ALL leukemia. This work was supported by a grant from the National Cancer Institute.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one of the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of four hospitals – Tisch Hospital, its flagship acute care facility; the Hospital for Joint Diseases, recognized as one of the nation's leading hospitals dedicated to orthopaedics and rheumatology; Hassenfeld Pediatric Center, a comprehensive pediatric hospital supporting a full array of children's health services; and Rusk Rehabilitation, inpatient and outpatient therapy services devoted entirely to rehabilitation medicine – plus NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to http://www.NYULMC.org.

Christopher Rucas | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>