Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Awarded $33.9 Million Grant to Study Enzyme Functions

21.05.2010
A team of researchers led by University of Illinois biochemistry professor John A. Gerlt has received a five-year, $33.9 million grant from the National Institutes of General Medical Sciences to study the functions of unknown enzymes.

The “glue grant” – so-called because it brings together multidisciplinary groups of investigators – was awarded to provide resources to tackle the “complex problems that are of central importance to biomedical science but are beyond the means of any one research group,” according to the NIGMS.

Gerlt’s team will develop a strategy for discovering the functions of unknown, or uncharacterized, enzymes discovered in genome-sequencing projects.

“Genome projects have taught us that many of nature’s enzymes have unknown functions that need to be discovered,” said Gerlt, an expert on the enolase superfamily of enzymes.

Enzymes are proteins that catalyze the chemical reactions required for life, and enable organisms to live in complex environments and adapt to a variety of conditions.

“We have sequences for more than 10 million proteins and we might know the specific functions of half of those,” Gerlt said. “But what do the other half do? If we knew their functions, imagine how we might use them to identify new drug targets or provide catalysts used in industry.”

Gerlt and co-researcher Patricia Babbitt, of the University of California at San Francisco, have led the way in developing a novel method to determine an uncharacterized protein’s function. Their approach uses computational methods to narrow the range of possible substrates for the enzyme.

Gerlt says this project is a potentially powerful way to exploit the sequence data that have not yet been deciphered; it also could provide a way to learn more about metabolic pathways crucial to all organisms.

For the glue grant, officially known as the Enzyme Function Initiative, Gerlt and Babbitt have assembled a team of researchers from several disciplines to determine the structure of an unknown enzyme and then, computationally, determine a “hit list” of possible substrates, numbering in the tens, rather than the thousands.

The team of researchers comprises scientists from the Albert Einstein College of Medicine, Boston University, Texas A&M University, the University of New Mexico, the University of Utah, the Vanderbilt University School of Medicine and the University of Virginia.

The team also includes a microbiology group led by John Cronan, a professor of microbiology at Illinois, and Jonathan Sweedler, a professor of chemistry at Illinois.

“This program gathers together an outstanding group of researchers who will use their expertise in enzymology, structural biology, computational modeling and bioinformatics to develop an approach to associate enzymatic functions with genes in thousands of organisms,” said Warren Jones, the chief of the biochemistry and biorelated chemistry branch in the division of pharmacology, physiology and biological chemistry at the NIGMS.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>