Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher tricks immune system in diabetic mice

24.11.2008
New strategy eliminates need for toxic drugs in islet transplant

The body's immune system hates strangers. When its security patrol spots a foreign cell, it annihilates it.

This is the problem when people with type 1 diabetes undergo human islet cell transplantation. The islet cells from a donor pancreas produce robust amounts of insulin for the recipient -- often permitting independence from insulin therapy. However, the immune system tries to kill the new hard-working islets.

A person who has the transplant procedure must take powerful immunosuppressive drugs to prevent their bodies from rejecting the cells. The drugs, however, are toxic to the new islet cells and put patients at risk for infections and cancer.

Now researchers at Northwestern University's Feinberg School of Medicine have found a way to trick the immune system of mice into believing those transplanted islets are its own cells. This new technique eliminated the need for the immunosuppressive drugs in mice with chemically-induced diabetes after they had islet transplantation.

"We made the recipient feel that the donor cells are their own," explained Stephen Miller, co-principal investigator and the Judy Gugenheim Research Professor of Microbiology-Immunology at the Feinberg School. "This technique is a highly attractive potential therapy for human islet cell transplantation." The findings were reported in the journal Proceedings of the National Academy of Science in the fall.

As many as 3 million people in the U.S. may have type 1 diabetes, a disease that develops in children and adolescents. There are about 50 to 70 islet transplants, an experimental procedure, annually in North America.

Miller said he was happily surprised to see that such a high percentage of recipients of the transplanted islet cells -- greater than 70 percent -- maintained transplants long-term. His research showed the host's tolerance to these transplanted cells seemed to be permanent, lasting for at least 150 days. Xunrong Luo, assistant professor of medicine in nephrology at the Feinberg School, was co-principal investigator for the study.

In the study, researchers took a type of white blood cell from the islet donor's spleen, called splenocytes, and treated them with a chemical that masked the cells' identity. They then injected these chemically treated cells into diabetic mice before and after the mice underwent islet cell transplantation. As a result, the immune system of the mice didn't try to reject the cells, because it didn't perceive them as foreign and dangerous.

When the same test was done without pre-treated cells, the immune system rejected the transplanted islets within 15 days.

In an upcoming study, Miller and Luo will work with mice that have autoimmune disease that destroys their islet cells, as occurs in type 1 diabetes. Researchers will use therapies that prevent the autoimmune system's response against its own beta cells (which are part of the islets) as well as prevent the recipient's immune responses against the transplanted islet cells.

"We have ways we can do both," Miller said. "Hopefully this next study will show we can take combined therapies for underlying autoimmune disease and transplanted islets. If we do that together, we hopefully can cure an animal who became diabetic from autoimmune disease." If successful, the next step would be testing the technique on human subjects.

Miller said this technique also has applications for treating other autoimmune diseases such as multiple sclerosis.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>