Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher lists more than 4,000 components of blood chemistry

25.02.2011
After three years of exhaustive analysis led by a University of Alberta researcher, the list of known compounds in human blood has exploded from just a handful to more than 4,000.

"Right now a medical doctor analyzing the blood of an ailing patient looks at something like 10 to 20 chemicals," said U of A biochemist David Wishart. "We've identified 4,229 blood chemicals that doctors can potentially look at to diagnose and treat health problems."

Blood chemicals, or metabolites, are routinely analyzed by doctors to diagnose conditions like diabetes and kidney failure. Wishart says the new research opens up the possibility of diagnosing hundreds of other diseases that are characterized by an imbalance in blood chemistry.

Wishart led more than 20 researchers at six different institutions using modern technology to validate past research, and the team also conducted its own lab experiments to break new ground on the content of human-blood chemistry.

"This is the most complete chemical characterization of blood ever done," said Wishart. "We now know the normal values of all the detectable chemicals in blood. Doctors can use these measurements as a reference point for monitoring a patient's current and even future health."

Wishart says blood chemicals are the "canary in the coal mine," for catching the first signs of an oncoming medical problem. "The blood chemistry is the first thing to change when a person is developing a dangerous condition like high cholesterol."

The database created by Wishart and his team is open access, meaning anyone can log on and find the expanded list of blood chemicals. Wishart says doctors can now tap into the collected wisdom of hundreds of blood-research projects done in the past by researchers all over the world. "With this new database doctors can now link a specific abnormality in hundreds of different blood chemicals with a patient's specific medical problem," said Wishart.

Wishart believes the adoption of his research will happen slowly, with hospitals incorporating new search protocols and equipment for a few hundred of the more than 4,000 blood-chemistry markers identified by Wishart and his colleagues.

"People have being studying blood for more than 100 years," said Wishart. "By combining research from the past with our new findings we have moved the science of blood chemistry from a keyhole view of the world to a giant picture window."

The research was published last week in the journal PLoS One.

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Breakthrough in designing a better Salmonella vaccine
25.09.2018 | University of California - Davis

nachricht Proof of Concept: Gene therapy for mitochondrial diseases
25.09.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Establishing metastasis

25.09.2018 | Health and Medicine

Artificial intelligence to improve drug combination design & personalized medicine

25.09.2018 | Health and Medicine

Small modulator for big data

25.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>