Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Technology to Target Human Gut Bacteria

16.09.2010
The National Institutes of Health has awarded a three-year, $1.1 million grant to a team of scientists at the University of Chicago and Argonne National Laboratory to develop a technology for studying the link between human health and disease and the microorganisms that reside in or on the human body.

The grant is one of 14 awarded nationwide to research groups as part a $42 million expansion of the Human Microbiome Project. The human microbiome consists of beneficial and harmful microbes that include bacteria, viruses and fungi. The NIH launched the five-year, $157 million project in 2008 to serve as a research resource and to provide strategies for developing new therapies that manipulate the human microbiome to improve health.

Leading the UChicago-Argonne team will be Rustem Ismagilov, Professor in Chemistry. Joining him on the project are Eugene B. Chang, the Martin Boyer Professor of Medicine; Dionysios Antonopoulos, Assistant Professor of Medicine and biologist at Argonne, and Folker Meyer; associate director of Argonne’s Institute for Genomics and Systems Biology.

Historically, microbes have been studied in the laboratory as cultures of isolated species, but their growth is dependent upon a specific natural environment that is often difficult to duplicate. The NIH now seeks to develop techniques that can both increase the success rate for cultivating microbes and target cultivation efforts toward microbes of high biomedical interest.

The UChicago-Argonne team will use microfluidics to overcome the limitations of traditional cultivation and targeting methods by developing a single-cell confinement technology. Microfluidics is a means of precisely controlling the flow of liquids through channels thinner than a human hair.

The team will use sulfur-reducing bacteria from the human colon as the test system. These poorly understood bacteria are associated with ulcerative colitis and intra-abdominal infections, but the technology will generally apply to the identification and cultivation of all classes of microbes in the human gut microbiome.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>