Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research to enhance speech recognition technology

17.01.2012
New research is hoping to understand how the human brain hears sound to help develop improved hearing aids and automatic speech recognition systems.

ed by the Universities of Southampton and Cambridge, the research aims to develop physiologically-inspired algorithms, which mimic how our brain hears sound to improve on traditional signal processing algorithms.

The novelty of the research is that instead of looking at signal energy - as today's artificial devices do - the researchers are concentrating on how the brain processes sound information instead.

Dr Stefan Bleeck, from the Institute of Sound and Vibration Research at the University of Southampton, is looking to create algorithms based on neuronal responses to give insights into how sound is coded within the brain. Once researchers know better how sound is coded, they will be able to select the parts that code speech and the ones that code unwanted noise. They will then be able to resynthesize sound in hearing aids with reduced noise, but with quality intact, to enhance speech intelligibility.

Today's speech enhancement systems can reduce noise and increase speech quality, but they are not good at improving speech intelligibility, especially in noisy situations where users have to concentrate to pick out single speakers. With about 10 per cent of the UK population hearing impaired, current signal processing technology hasn't come up with a suitable system to enhance speech intelligibility.

Dr Bleeck says: "Today, it is still the ultimate goal for the speech signal processing community to develop speech enhancement systems that perform as well as humans in noisy situations. Normal hearing humans still easily outperform any technical system - sound processing in the brain is more successful than signal processing in silicone. A system that works as well as a human would lead to the next revolution in human communication and would greatly benefit hearing impaired people.

"My vision is to build a brain-inspired speech enhancer in the next five years, which will be able to identify sound sources and to enhance speech intelligibility. This should be useful in everyday situations, for hearing impaired as well as normal hearing people, so that it ultimately reduces the stigma that hearing aids have today. Using this device in the future to hear better should be as normal as wearing glasses today to see better."

Dr Bleeck has received funding from a Google Research Award to undertake this research with ISVR colleague Dr Matthew Wright, and Dr Ian Winter of the University of Cambridge's Department of Physiology.

Notes for editors
1. A copy of the paper 'Speech enhancement in the neural space' is available from Media Relations on request.

2. The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.

With over 23,000 students, around 5,000 staff, and an annual turnover well in excess of £435 million, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning.

The University is also home to a number of world-leading research centres including the Institute of Sound and Vibration Research, the Optoelectronics Research Centre, the Web Science Trust and Doctoral training Centre, the Centre for the Developmental Origins of Health and Disease, the Southampton Statistical Sciences Research Institute and is a partner of the National Oceanography Centre at the Southampton waterfront campus.

For further information contact:

Glenn Harris, Media Relations, University of Southampton, Tel: 023 8059 3212, email: G.Harris@soton.ac.uk

Glenn Harris | alfa
Further information:
http://www.soton.ac.uk/mediacentre/

More articles from Life Sciences:

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht A microscopic topographic map of cellular function
13.06.2019 | University of Missouri-Columbia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>