Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new role for miRNA in leukemia

10.12.2007
Scientists here have found that mini-molecules called micro-RNA may play a critical role in the progression of chronic myeloid leukemia (CML) from its more treatable chronic phase to a life-threatening phase, called blast crisis.

Furthermore, they discovered an entirely new function for these molecules. The researchers show that microRNAs can sometimes directly control a protein’s function – not just whether or not the protein is made by the cell, as has been believed.

The study, using cells from CML patients in blast crisis, suggests that certain progenitor white blood cells are kept from maturing when levels of one microRNA, called miR-328, fall abnormally low. Immature white cells then build up in the blood and bone marrow, a telltale sign that the patient has entered the therapy-resistant blast-crisis phase.

The findings are being presented at the 2007 annual meeting of the American Society of Hematology (ASH), Dec. 8-11 in Atlanta.

... more about:
»CML »MicroRNA »blast-crisis »leukemia »miR-328 »progression »role

“If verified, our study suggests that altering microRNA levels might represent a potentially new therapeutic strategy for CML patients who do not benefit from effective targeted agents such as imatinib (Gleevec) and dasatinib (Sprycel),” says principal investigator Danilo Perrotti, assistant professor of molecular virology, immunology and medical genetics and a researcher with the Ohio State University Comprehensive Cancer Center.

“The findings also reveal a new function for microRNAs, which should further our understanding of their role in cancer development and progression, and in normal cells.”

Researchers have known for some time that microRNAs bind to molecules called messenger RNA, which are part of the cell’s protein-making machinery, and in this way help regulate the types and amount of proteins made by cells.

But this study shows for the first time that the microRNA molecules sometimes bind directly with proteins themselves and affect their function.

In this case, a microRNA called miR-328 binds with a protein that, in blast phase CML, prevents immature blood cells from maturing. “We believe that miR-328 acts as a decoy molecule that normally ties up the protein, which enables the white blood cells to mature as they should,” Perrotti says.

During progression from chronic-phase to blast-crisis CML, however, the level of miR-328 falls, allowing the protein to be extremely active. This keeps the progenitor white blood cells from maturing, thus favoring blast-crisis conditions.

“These findings are important because they help us understand the biology of blast-crisis CML, and they may help unravel novel pathways responsible for the initiation and progression of leukemia generally,” Perrotti says.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: CML MicroRNA blast-crisis leukemia miR-328 progression role

More articles from Life Sciences:

nachricht Looking for new antibiotics
08.04.2020 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Research against the corona virus - tissue models for rapid drug testing
08.04.2020 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Doubts about basic assumption for the universe

08.04.2020 | Physics and Astronomy

Accelerating AI Together – DFKI Welcomes NVIDIA as Newest Shareholder

08.04.2020 | Information Technology

Ear’s inner secrets revealed with new technology

08.04.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>