Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lymphatic vessel and lymph node function are restored with growth factor treatment

03.12.2007
The frequent spread of certain cancers to lymph nodes often necessitates surgery or radiation therapy that damages the lymphatic system and can cause lymphedema, a condition of localized fluid retention that often increases susceptibility to infections.

The researchers at the University of Helsinki, Finland, and the Ludwig Institute of Cancer Research show that application of vascular endothelial growth factor-C (VEGF-C) to replace excised mouse lymph nodes and lymph vessels ensures formation of mature lymphatic vessels and incorporation of lymph node transplants into existing lymphatic vasculature. An improved outcome of lymph node transplantation is evidenced by improved lymphatic drainage and restoration of normal lymphatic vascular anatomy in VEGF-C-treated mice.

The ability to transfer lymph nodes that reconstitute a functional network of lymphatic vessels in adult tissues is of particular importance in cancer follow-up therapy, as lymph nodes can prevent systemic dissemination of metastases. Accordingly, VEGF-C-treated lymph nodes were more effective in trapping metastatic tumor cells than control transplants.

It has been estimated that approximately 20-30% of patients that have undergone irradiation or surgery of the armpit in response to lymph node metastases develop lymphedema later on. Damage to the large collecting lymphatic vessels, which resemble smaller veins, causes the vast majority of all lymphedemas. It has been estimated that several million patients suffer from such acquired lymphedema worldwide. The treatment of lymphedema is currently based on physiotherapy, compression garments and occasionally surgery, but means to reconstitute the collecting lymphatic vessels and cure the condition are limited.

The researchers applied vascular endothelial growth factor-C (VEGF-C) gene therapy in mice after surgery removal of axillary lymph nodes, a procedure that mimicked removal of axillary lymph nodes in patients in response to metastatic breast cancer. They found that treatment of lymph node-excised mice with adenoviral VEGF-C gene transfer vectors induced robust growth of the lymphatic capillaries, which gradually underwent an intrinsic remodeling, differentiation and maturation program into functional collecting lymphatic vessels, including formation of uniform endothelial cell-cell junctions and intraluminal valves.

As VEGF-C quite potently increases the rate of lymph node metastasis, the researchers sought to develop a mode of therapy that could be safely applied also in patients that had been treated for cancer. They established that the VEGF-C therapy greatly improved the outcome of lymph node transplantation. As a result, they were able to reconstruct the normal gross anatomy of the lymphatic network in the axilla, including both the lymphatic vessels and the nodes, suggesting that VEGF-C therapy combined to autologous lymph node transfer is feasible in the clinical setting.

The advantage of this rationale is increased patient safety in instances of recurrent malignancies, as the transplanted lymph nodes provide an immunological barrier against systemic dissemination of cancer cells, as well as other pathogens.

The findings demonstrate for the first time that growth factor therapy can be used to generate functional and mature collecting lymphatic vessels. This, combined with lymph node transplantation, allows for complete restoration of the lymphatic system in damaged tissues, and provides a working model for future treatment of lymphedema in patients. Effective lymph node transplantation holds tremendous potential for immunotherapy applications in the treatment of diseases such as cancer and chronic infections. Furthermore, the findings encourage the use of growth factor therapy to enhance the vascular integration and viability of transplanted tissues.

The group is currently pursuing this form of therapy in larger animal models in order to eventually treat lymphedema patients. Further the group aims to discover methods that would accelerate lymphatic vessel maturation.

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

Further reports about: Transplantation VEGF-C collecting lymph lymph nodes lymphatic lymphedema node vascular vessel

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>