Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major advance in crystal structure prediction

30.11.2007
Dr. Marcus Neumann of Avant-garde Materials Simulation (AMS) in Paris has achieved a major advance in the prediction of the crystal structures of small organic molecules as part of an international scientific event.

He collaborated with researchers Drs. Frank Leusen and John Kendrick from the Institute of Pharmaceutical Innovation (IPI) at the University of Bradford, who applied AMS technology in the Blind Test in Crystal Structure Prediction, organised by the University of Cambridge and hosted by the Cambridge Crystallographic Data Centre (CCDC).

The three researchers have met the challenge by correctly predicting the crystal structures of all four Blind Test compounds using computational methods without any experimental input.

Crystal structures describe the periodically repeating arrangement of molecules in a material and determine many of a material’s properties, such as solubility, dissolution rate, hardness, colour and external shape. The ability to predict crystal structures could revolutionise the design of materials with novel properties.

In particular, the pharmaceutical industry would benefit from reliable methods of crystal structure prediction because pharmaceutical molecules are prone to crystallise in more than one crystal structure (or polymorph), depending on the conditions under which the molecule is crystallised. The specific polymorph that goes into a formulation must be strictly controlled to ensure consistency of delivery to the patient.

The team applied a new computer program, GRACE, recently developed by Avant-garde Materials Simulation, and predicted the crystal structures of all four test compounds correctly. Their results are a significant improvement over the outcome of previous Blind Tests. The other 14 participants in the event also achieved an improvement in the number of correctly predicted crystal structures, although no other participant correctly predicted all four crystal structures.

Dr Marcus Neumann, author of computer program GRACE for crystal structure prediction and Director of AMS, said: “Obviously we are delighted with these results but there is still plenty of room for improvements. Over the next few years the range of applicability will gradually extend towards more and more complex compounds such as highly flexible molecules, solvates and salts.”

Many approaches to the problem have been developed and these have been evaluated over the years in the Blind Tests. The research groups who had been developing methods for predicting crystal structures in the latest test were challenged to predict four recently determined crystal structures given only the chemical diagram of the molecules and conditions of crystallisation, with three predictions allowed per crystal.

The results of previous blind tests, in 1999, 2001 and 2004, demonstrated that the crystal structures of small organic molecules are hard to predict. The rates of success were low and no one method was consistently successful over the range of types of molecules studied.

Dr Graeme Day of the University of Cambridge, who co-ordinated this year’s challenge, said: “The results of this year’s test reflect significant development over the past few years. Things looked much less encouraging last time we held a blind test, but crystal structure prediction can now be seen as a real tool to be used alongside experimental studies, when designing new materials or developing a pharmaceutical molecule.”

Dr John Kendrick, Senior Researcher at the Institute of Pharmaceutical Innovation at the University of Bradford, said: “We are tremendously excited about this result. The success of our approach begins to answer many questions which have been posed over the years, and opens up several new avenues for leading-edge research.

“Having proven that the crystal structures of small organic compounds can be predicted reliably, we now face the challenge of predicting the relative stability of polymorphs as a function of crystallisation conditions to really capture the effect of temperature and solvent.”

For additional information, please contact:

Dr Marcus A. Neumann, Avant-garde Materials Simulation, 30 bis, rue du vieil Abreuvoir, F-78100 Saint-Germain-en-Laye, France Marcus.Neumann@avmatsim.eu

tel: +33 (0)6 25053329

Dr John Kendrick or Dr Frank Leusen, Institute of Pharmaceutical Innovation, University of Bradford, Bradford, BD7 1DP, United Kingdom
j.kendrick@bradford.ac.uk
f.j.j.leusen@bradford.ac.uk
Tel: +44 (0)1274 236101
Dr Graeme M. Day, Royal Society University Research Fellow, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
gmd27@cam.ac.uk
tel: +44 (0)1223 336390
Dr Frank Allen, Executive Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, United Kingdom

allen@ccdc.cam.ac.uk

Avant-garde Materials Simulation (AMS)

With funding from the pharmaceuticals industry and a strong focus on the elaboration of innovative and proprietary methods and algorithms, Avant-garde Materials Simulation's highly qualified staff has been dedicated to the development of leading edge software in the field of crystal structure prediction since 2002.

Crystal structures are predictable, and so will be many of their properties. Avant-garde Materials Simulation is the ideal partner for any industrial company who needs to gain immediate access to cutting-edge technology for in silico polymorph screening.

For more information on AMS, visit http://www.avmatsim.eu/

The Institute of Pharmaceutical Innovation (IPI)

The IPI at the University of Bradford is a research facility dedicated to supporting innovation in drug development and drug delivery.

Academic research in the IPI focuses on the global need to accelerate the drug development process. Its research aims to transform molecules and biologicals into quality medicines. Within this focused activity, the latest computational and experimental techniques are applied by a multidisciplinary research team with solid industrial experience.

For more information about the IPI, visit www.ipi.ac.uk

Oliver Tipper | alfa
Further information:
http://www.ipi.ac.uk
http://www.bradford.ac.uk
http://www.avmatsim.eu/

Further reports about: AMS Avant-garde Blind Cambridge Development IPI Pharmaceutical Polymorph predict predicted prediction

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>