Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human RecQ helicases, homologous recombination and genomic instability

19.11.2007
Two independent papers in the December 1st issue of G&D detail how human RecQ helicases regulate homologous recombination and protect genome stability.

The human RecQ family of helicases consists of 5 members: WRN, BLM, RECQL4, RECQL1 and RECQL5. These enzymes help to unwind DNA so to facilitate replication, transcription and DNA repair. Mutations in BLM, WRN and RECQ4 cause the cancer-predisposition syndromes Bloom’s Syndrome, Werner’s Syndrome and Rothmund-Thomson Syndrome, respectively. Interestingly, these cancer-prone genetic conditions are associated with defects in the DNA repair pathway of homologous recombination (HR).

Dr. Alexander Mazin (Drexel University College of Medicine) and colleagues focused their research on the function of the Bloom’s syndrome helicase, BLM. They found that BLM has differential roles in regulating HR: depending upon the stage of its involvement, BLM can either promote or inhibit HR – leading the authors to the surprising conclusion that the “combination of opposing activities gives BLM an important leverage in regulation of HR.”

In a separate paper, Drs. Guangbin Luo (Case Western Reserve Univeristy) and Patrick Sung (Yale University School of Medicine) and their colleagues demonstrate that another member of the human RecQ family, RECQL5, can also interfere with HR, by disrupting a particular step (formation of the Rad51 presynaptic filament) in the pathway. Dr. Sung emphasizes that “These results elucidate hoe RECQL5 proetin helps avoid deleterious chromosome rearrangements that can cause tumorigenesis.”

... more about:
»BLM »RecQ »helicase »recombination

Taken together, these papers lend new insight into the molecular function of human RecQ helicases in protecting genome stability and preventing tumorigenesis.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: BLM RecQ helicase recombination

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>