Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic technology reveals how poisonous mushrooms cook up toxins

14.11.2007
Heather Hallen spent eight years looking for poison in all the wrong places.

Alpha-amanitin is the poison of the death cap mushroom, Amanita phalloides. The Michigan State University plant biology research associate was looking for a big gene that makes a big enzyme that produces alpha-amanitin, since that’s how other fungi produce similar compounds. But after years of defeat, she and her team called in the big guns – new technology that sequences DNA about as fast as a death cap mushroom can kill.

The results: The discovery of remarkably small genes that produce the toxin – a unique pathway previously unknown in fungi.

The discovery is reported in today’s Proceedings of the National Academy of Sciences. It is work that not only solves a mystery of how some mushrooms make the toxin – but also sheds light on the underlying biochemical machinery. It might be possible one day to harness the mushroom genes to make novel chemicals that would be useful as new drugs.

... more about:
»DNA »Toxin »mushroom »poisonous »sequence

“We think we have a factory that spits out lots of little sequences to make chemicals in Amanita mushrooms,” said Jonathan Walton, MSU plant biology professor who leads Hallen’s team. “Our work indicates that these mushrooms have evolved a mechanism to make dozens or even hundreds of new, previously unknown chemicals, besides the toxins that we know about.”

Of the thousands of species of mushrooms, only about 30 produce alpha-amanitin. Most of them look much like their edible cousins. But poisonous mushrooms are powerful in folklore and in history. In 54 A.D., Emperor Tiberius Claudius was fed a death cap mushroom by his wife Agrippina to put her son Nero on the throne of Rome.

Alpha-amanitin kills people by inhibiting an enzyme necessary for expression of most genes. Without the ability to synthesize new proteins, cells quickly grind to a halt. The intestinal tract and the liver are the hardest hit as they come into first contact with the toxin. By the time symptoms show up, a liver transplant is often the only hope.

Hallen, a mycologist, gathers mushrooms in the Michigan woods and often is called upon to help identify mushroom species for veterinarians, parents of small children and local hospitals – often in a desperate race to beat alpha-amanitin’s effects.

Walton’s lab works to understand the biochemical pathways by which natural products are synthesized in fungi. Fungal natural products that benefit human health include penicillin and the immunosuppressant drug cyclosporin. Studying their biosynthesis could lead to the discovery and development of new medicines.

To find the elusive gene for alpha-amanitin, they used what they term “brute force” – a new machine at MSU that can sequence immense quantities of DNA quickly. The 454 LifeSciences pyrosequencer generates 100 Mb DNA sequence in one overnight run - twice the size of a fungal genome. Traditional sequencing methods require months to yield the same quantities. What they found was a gene that encodes the toxin directly – with no need to first synthesize an enzyme that in turn would make the toxin.

“The RNA goes in, and out comes the backbone of the toxin,” Hallen said. After its initial synthesis, the toxin is then modified in several ways by the mushroom to make it exceptionally poisonous.

Walton said the discovery poses some interesting evolutionary questions. For example, why do only some mushrooms produce this toxin" And how did a handful of other, unrelated mushrooms evolve the same trait" Finding the genes points to how the trait could appear in one mushroom, but not how it evolved in mushrooms that aren’t related to Amanita.

Hallen and Walton also see the doors opening to a diagnostic test that could use DNA to determine if a mushroom is toxic or not. Identifying a mushroom by shape and color alone is often impossible if the mushroom has been cooked or partially digested, yet rapid and accurate identification in an emergency room situation is critical.

Jonathan Walton | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: DNA Toxin mushroom poisonous sequence

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>