Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

KGI Professor Contributes New Insights on ‘Jumping Genes’

09.10.2007
Keck Graduate Institute (KGI) today announced that Dr. Animesh Ray, KGI professor and director of KGI’s PhD program, has published a paper in the international online journal PLoS ONE that sheds new light on the evolution of moveable genetic elements, or “jumping genes.”

“We have known for some time that some genes can move from one place to another within the genome,” said President Sheldon Schuster, PhD, KGI’s president. “Dr. Ray’s research provides evidence that this movement of genes does not cause instability at the point from which the gene moves. This discovery has important implications for our understanding of molecular evolution and genetic research involving plants, including genetically modified crops. These findings take us closer, for example, to more precisely predicting the changes a drought-resistant jumping gene from one plant put into another may cause to the DNA.”

Using the plant Arabidopsis thaliana, Ray and his students studied the “footprint” that is left behind when a jumping gene moves to another locus. They devised a test for examining these footprints that revealed a mechanism for the broken DNA at the launching pad region (the original location of the jumping gene) to join together to repair the vacant area. The results indicated that the DNA repaired itself in a manner that did not produce drastic abnormalities.

Ray characterized the genomic DNA as “smart” for repairing itself in a manner that doesn’t produce drastic abnormalities. He also said that the process of repairing is “ancient” because the mechanism appears similar to that used by the immune system of mammals. Ancestors of plants and mammals diverged early in evolution, at least 1.5 billion years ago.

... more about:
»DNA »Evolution »Graduate »KGI »KGI’s »PhD »moveable

The findings of Ray, his students Marybeth Langer and Lynn Sniderhan from the University of Rochester and co-author Ueli Grossniklaus, professor at the University of Zurich, were reported in the paper “Transposon Excision from an Atypical Site: A Mechanism of Evolution of Novel Transposable Elements.” The work extends theories of the renowned cytogeneticist Barbara McClintock, who originally discovered moveable genetic elements. Ray’s research also follows on the work of molecular geneticist Enrico Coen who has examined implications of moveable genes in plants and first proposed a similar mechanism of chromosome healing.

Ray’s laboratory conducts research in systems biology, and he teaches courses that include the logic and methods of gene function discovery and their applications to human therapeutics. He is a pioneer in computing with molecules and designed the first artificial logic circuits with DNA. He previously conducted research at the Institute of Molecular Biology, University of Oregon, and at the Department of Biology, Massachusetts Institute of Technology.

Ray earned his PhD in microbial genetics from Monash University in Melbourne, Australia. Previously he was a faculty member at the University of Rochester and at the University of California, San Diego.

KGI BackgrounD
Educating the future leaders of the bioscience industry, Keck Graduate Institute (KGI) offers an interdisciplinary graduate education through its Master of Bioscience (MBS) degree program and its Ph.D. program in Applied Life Sciences. Using team-based learning and real-world projects, KGI’s innovative curriculum seamlessly combines applied life sciences, bioengineering, bioethics and business management. KGI also has a robust research program concentrating on the translation of basic discoveries in the life sciences into applications that can benefit society. KGI is a member of The Claremont Colleges, located in Claremont, California.

Keck Graduate Institute of Applied Life Sciences is dedicated to education and research aimed at translating into practice, for the benefit of society, the power and potential of the life sciences.

Citation: Langer M, Sniderhan LF, Grossniklaus U, Ray A (2007) Transposon Excision from an Atypical Site: A Mechanism of Evolution of Novel

Transposable Elements. PLoS ONE 2(10): e965. doi:10.1371/journal.pone.0000965

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000965

Further reports about: DNA Evolution Graduate KGI KGI’s PhD moveable

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Proteins imaged in graphene liquid cell have higher radiation tolerance

10.12.2018 | Materials Sciences

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>