Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrothermal vents: Hot spots of microbial diversity

08.10.2007
New analysis aids in discovery of thousands of deep-sea microbes

Thousands of new kinds of marine microbes have been discovered at two deep-sea hydrothermal vents off the Oregon coast by scientists at the MBL (Marine Biological Laboratory) and University of Washington’s Joint Institute for the Study of Atmosphere and Ocean. Their findings, published in the October 5 issue of the journal Science, are the result of the most comprehensive, comparative study to date of deep-sea microbial communities that are responsible for cycling carbon, nitrogen, and sulfur to help keep Earth habitable.

Using a new analytical technique called “454 tag sequencing,” the scientists surveyed one million DNA sequences of bacteria and archaea, two of the three major domains of life. The DNA was taken from samples collected from two hydrothermal vents on the Pacific deep-sea volcano, Axial Seamount.

The researchers discovered that while there may be as few as 3,000 different kinds of archaea at these sites, the bacteria exceed 37,000 different kinds.

“Most of these bacteria had never been reported before, and hundreds were so different from known microbes that we could only identify them to the level of phylum,” says lead author, Julie Huber of the MBL. “Clearly, additional sampling of these communities will be necessary to determine the true diversity.”

The research also revealed that the microbial population structures differed between vent sites due to their different geochemical environments. The ability to link environmental characteristics with microbial population structures using 454 tag sequencing allows scientists to assess how natural and manmade environmental changes are affecting diverse habitats on Earth.

Until now, microbiologists have had limited tools for assessing microbial populations and diversity. The MBL’s 454 tag sequencing strategy is an important contribution to the young science of metagenomics, which seeks to characterize communities of organisms through genomic analysis. While other metagenomic studies look at all the genes in an environmental sample, such as a bucket of seawater or scoop of sediment, 454 tag sequencing examines one tiny, highly variable region of one gene that all microbes have (the 16s rRNA gene). It is much more efficient and cost effective than other environmental microbial survey tools.

“The tremendous diversity we found using 454 tag sequencing suggests that even the largest metagenomic surveys--which capture only the most highly abundant taxa-- inadequately represent the full extent of microbial diversity,” says MBL scientist David Mark Welch, one of Huber’s co-authors. “Even with tag sequencing, statistical tests of our data suggest we still only sampled about half of the total number of species that were actually present.”

The new findings also underscore just how daunting understanding marine microbial diversity is. “This research demonstrates that surveys of hundreds of thousands of sequences will be necessary to capture the vast diversity of microbial communities, and that different patterns in evenness for both high and low-abundance taxa may be important in defining microbial ecosystem dynamics,” says Mitchell Sogin, director of the MBL’s Josephine Bay Paul Center for Comparative Molecular Biology and Evolution.

This research is part of the ongoing International Census of Marine Microbes, a massive effort to inventory the world’s marine microbial diversity. It is also part of a major MBL initiative to study microbial ecology and evolution to understand how microbial communities are evolving in response to natural and human-induced environmental changes.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

Further reports about: Communities Environmental MBL Sequencing diversity

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>