Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrothermal vents: Hot spots of microbial diversity

08.10.2007
New analysis aids in discovery of thousands of deep-sea microbes

Thousands of new kinds of marine microbes have been discovered at two deep-sea hydrothermal vents off the Oregon coast by scientists at the MBL (Marine Biological Laboratory) and University of Washington’s Joint Institute for the Study of Atmosphere and Ocean. Their findings, published in the October 5 issue of the journal Science, are the result of the most comprehensive, comparative study to date of deep-sea microbial communities that are responsible for cycling carbon, nitrogen, and sulfur to help keep Earth habitable.

Using a new analytical technique called “454 tag sequencing,” the scientists surveyed one million DNA sequences of bacteria and archaea, two of the three major domains of life. The DNA was taken from samples collected from two hydrothermal vents on the Pacific deep-sea volcano, Axial Seamount.

The researchers discovered that while there may be as few as 3,000 different kinds of archaea at these sites, the bacteria exceed 37,000 different kinds.

“Most of these bacteria had never been reported before, and hundreds were so different from known microbes that we could only identify them to the level of phylum,” says lead author, Julie Huber of the MBL. “Clearly, additional sampling of these communities will be necessary to determine the true diversity.”

The research also revealed that the microbial population structures differed between vent sites due to their different geochemical environments. The ability to link environmental characteristics with microbial population structures using 454 tag sequencing allows scientists to assess how natural and manmade environmental changes are affecting diverse habitats on Earth.

Until now, microbiologists have had limited tools for assessing microbial populations and diversity. The MBL’s 454 tag sequencing strategy is an important contribution to the young science of metagenomics, which seeks to characterize communities of organisms through genomic analysis. While other metagenomic studies look at all the genes in an environmental sample, such as a bucket of seawater or scoop of sediment, 454 tag sequencing examines one tiny, highly variable region of one gene that all microbes have (the 16s rRNA gene). It is much more efficient and cost effective than other environmental microbial survey tools.

“The tremendous diversity we found using 454 tag sequencing suggests that even the largest metagenomic surveys--which capture only the most highly abundant taxa-- inadequately represent the full extent of microbial diversity,” says MBL scientist David Mark Welch, one of Huber’s co-authors. “Even with tag sequencing, statistical tests of our data suggest we still only sampled about half of the total number of species that were actually present.”

The new findings also underscore just how daunting understanding marine microbial diversity is. “This research demonstrates that surveys of hundreds of thousands of sequences will be necessary to capture the vast diversity of microbial communities, and that different patterns in evenness for both high and low-abundance taxa may be important in defining microbial ecosystem dynamics,” says Mitchell Sogin, director of the MBL’s Josephine Bay Paul Center for Comparative Molecular Biology and Evolution.

This research is part of the ongoing International Census of Marine Microbes, a massive effort to inventory the world’s marine microbial diversity. It is also part of a major MBL initiative to study microbial ecology and evolution to understand how microbial communities are evolving in response to natural and human-induced environmental changes.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

Further reports about: Communities Environmental MBL Sequencing diversity

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Physicists found a correlation between the structure and magnetic properties of ceramics

18.12.2018 | Physics and Astronomy

Unique insights into an exotic matter state

18.12.2018 | Physics and Astronomy

Physicists studied the influence of magnetic field on thin film structures

18.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>