Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD study reveals the regulatory mechanism of key enzyme

25.09.2007
Protein kinase A involved in cardiac disease and breast cancer

Research conducted at the University of California, San Diego (UCSD) School of Medicine has shed new light on the structure and function of one of the key proteins in all mammalian cells, protein kinase A (PKA), an enzyme which plays an essential role in memory formation, communication between nerve cells, and cardiac function.

Utilizing a process called x-ray crystallography, the scientists solved the structure of the large PKA complex, revealing a totally new structure that shows PKA’s amazing ability to function as a “scaffold,” that supports and controls the release of chemicals involved in transmitting signals. The structure is shown in the September 21 issue of the journal Cell, featuring the study that describes the dynamic regulatory subunit of PKA.

PKA belongs to a large superfamily of proteins whose activity is regulated by an important small molecule, cyclic AMP (cAMP), in the cell. Protein kinases transmit chemical signals within the cell to regulate a host of functions, such as cell growth or metabolism. Certain protein kinases have been implicated in the uncontrolled growth of cells; for example, when PKA somehow stays “on,” its prolonged activation can lead to cardiac disease and breast cancer.

... more about:
»Kinase »PKA »UCSD »cAMP »cardiac »catalytic »structure

By revealing its highly accurate three-dimensional structure, the UCSD scientists have shown how PKA is inhibited and activated by cAMP. PKA contains two components, the regulatory and catalytic subunits. When the subunits are together in the absence of cAMP, the signaling is turned off; when the two parts break apart after being activated by cAMP, PKA is turned on.

“We knew how the two subunits, the catalytic and regulatory subunits, looked as separate entities. But we didn’t understand how they actually fit together and are activated by cAMP until we saw this structure,” said Susan Taylor, Ph.D., Howard Hughes Medical Institute Investor and professor of pharmacology at UCSD School of Medicine, who headed the study.

Discovery of this enzyme’s molecular structure may help researchers to design drugs that specifically block the protein kinase activity involved in cancer or cardiac disease.

“Scientists didn’t really understand how the structure unfolded before now,” said Taylor, adding that preventing the subunits from coming apart may be an effective way to inhibit diseases caused when PKA is activated and can’t turn itself off. Taylor said the researchers were surprised at how much the structure changed when PKA is turned off. “The regulatory subunit opens up and literally wraps itself around the catalytic subunit, thus completely turning the signal off,” she said.

Taylor is one of the world’s leading experts on the cAMP-dependent protein kinase, an enzyme that serves as a prototype for the entire protein kinase family. This family of enzymes has more than 500 members that are critical for regulation in all multi-cellular organisms, such as humans.

Taylor’s work in 1991 (reported in the July 26, 1991 issue of the journal Science) revealed the first-ever molecular structure of the catalytic subunit of a protein kinase, one involved in the action of adrenalin within cells. Understanding its structure was a sort of Rosetta stone for learning the structure of all protein kinases, because they all share certain fundamental characteristics.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Kinase PKA UCSD cAMP cardiac catalytic structure

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Success at leading conference on silicon materials science and technology in Japan

13.12.2018 | Awards Funding

NSF-supported scientists present new research results on Earth's critical zone

13.12.2018 | Earth Sciences

Barely scratching the surface: A new way to make robust membranes

13.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>