Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To evade chemotherapy, some cancer cells mimic stem cells

21.09.2007
Anti-cancer treatments often effectively shrink the size of tumors, but some might have an opposite effect, actually expanding the small population of cancer stem cells believed to drive the disease, according to findings presented today in Atlanta, Georgia at the American Association for Cancer Research’s second International Conference on Molecular Diagnostics in Cancer Therapeutic Development.

“Our experiments suggest that some treatments could be producing more cancer stem cells that then are capable of metastasizing, because these cells are trying to find a way to survive the therapy,” said one of the study’s investigators, Vasyl Vasko, M.D. Ph.D., a pathologist at the Uniformed Services University of the Health Sciences in Bethesda, Md.

“This may help explain why the expression of stem cell markers has been associated with resistance to chemotherapy and radiation treatments and poor outcome for patients with cancers including prostate, breast and lung cancers,” Dr. Vasko said. “That tells us that understanding how to target these markers and these cells could prove useful in treating these cancers.”

The cancer stem cell markers include Nanog and BMI1, both of which contribute to stem cells’ defining ability to renew themselves and differentiate into different cell types, Dr. Vasko said. These same molecules are found in embryonic stem cells.

... more about:
»Marker »Stem »Vasko »chemotherapy »stem cells

Researchers have recently debated the notion that some therapies are not capable of eradicating cancer because they do not target the cancer stem cells responsible for tumor development. To test this hypothesis, Dr. Vasko, along with scientists from the CRTRC Institute for Drug Development in San Antonio and from the Johns Hopkins University, set out to measure both stem cells markers and tumor volume before and after treatment in a mouse model.

They selected a rare form of cancer, mesenchymal chondrosarcoma (MCS), which has not been well described and for which there is no effective treatment. The researchers first determined that Nanog and BMI1 stem cell markers were more highly expressed in metastatic tumors compared to primary tumors. “This suggests that expression of the marker plays some role in development of metastasis,” Dr. Vasko said.

They then applied various therapies - from VEGF inhibitors such as Avastin to the proteasome inhibitor Velcade - in mice implanted with human MSC, and analyzed the effects on tumors. Some of the treatments seemed to work, because they led to a dramatic decrease in the size of the tumors, Dr. Vasko said. But analysis of stem cell expression before and after treatment revealed that even as some anti-cancer treatments shrank tumors, they increased expression of Nanog and BMI1. “These treatments were not enough to completely inhibit tumor growth, and the cancer stem cell markers were still present,” Dr. Vasko said.

Use of the agents Velcade and Docetaxel led to the most significant increase in stem cell markers within the treated tumor, while ifosfamide and Avastin inhibited expression of the markers in this cancer subtype.

“We hypothesize that the tumor escapes from chemotherapy by induction of stem cell marker expression,” he said. “The small number of cells that survive the treatment could then generate another tumor that metastasizes.”

Dr. Vasko doesn’t know how this happens, but theorizes that “dying cells could secrete a lot of factors that induce expression of stem cell markers in other cancer cells. I think they are trying to survive and they use a mechanism from their experience of embryonic life.”

Greg Lester | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: Marker Stem Vasko chemotherapy stem cells

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>