Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant to retard wrinkles discovered by Hebrew University researcher

31.08.2007
A new method for fighting skin wrinkles has been developed at the Hebrew University Faculty of Agriculture, Food and Environmental Quality Sciences.

In her doctoral research at the university, Dr. Orit Bossi succeeded in isolating a plant-based antioxidant that delays the aging process by countering the breakdown of collagen fibers in the skin. Dr. Bossi conducted her research under the supervision of Zecharia Madar, the Karl Bach Professor of Agricultural Biochemistry at the Hebrew University, and Prof. Shlomo Grossman of Bar-Ilan University.

Antioxidants operate against free radicals which cause a breakdown of many tissues in the body, including the skin. When found in small quantities in the body, free radicals are not harmful and are even involved in various physical processes. When there is an excess of free radicals, however, as occurs during normal aging or as a result of excessive exposure to ultra-violet radiation from the sun, the result, among other things, is a breakdown of the collagen and elastin fibers in the skin. When this happens, there is a loss of skin elasticity and the formation of wrinkles.

“A problem with many of the commercial antioxidants found today in the market that are said to retard the aging process is that they oxidize quickly and therefore their efficiency declines with time,” said Dr. Bossi. “Vitamin C, for example, oxidizes rapidly and is sensitive to high temperatures. This is also true of the antioxidant EGCG which is found in green tea, and vitamin E. As opposed to these, the antioxidant which I used in my research is able to withstand high temperatures, is soluble in water, and does not oxidize easily and thus remains effective over time.”

Dr. Bossi is looking towards a new generation of cosmetic products which will not only combat wrinkles but will be more effective against deeper levels of skin wrinkles than current products. Dr. Bossi did not reveal the plant source she used to derive the antioxidant, since the research is in the process of being patented.

In her research, Dr. Bossi conducted experiments on mice skin tissue, which, she says, resembles that of humans. She applied her antioxidant on two skin cell groups – those which had been exposed to the sun’s rays and received her antioxidant and those which also had been exposed to sun but did not receive the antioxidant. The untreated cells showed a rise in free radicals causing wrinkles, while those cells which had been treated showed no significant increase in the free radicals level.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

Further reports about: Bossi Hebrew University free radicals radicals wrinkles

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>