Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aluminium in breast tissue – a possible factor in the cause of breast cancer

29.08.2007
A new study has identified a regionally-specific distribution of aluminium in breast tissue which may have implications for the cause of breast cancer.

Scientists have found that the aluminium content of breast tissue and breast tissue fat was significantly higher in the outer regions of the breast, in close proximity to the area where there would be the highest density of antiperspirant.

Recent research has linked breast cancer with the use of aluminium-based, underarm antiperspirants. The known, but unaccounted for, higher incidence of tumours in the upper outer quadrant of the breast seemed to support such a contention. However, the identification of a mechanism of antiperspirant-induced breast cancer has remained elusive.

A team, led by Dr Chris Exley of the Birchall Centre for Inorganic Chemistry and Materials at Keele University in the UK, measured the aluminium content of breast tissue from 17 breast cancer patients recruited from Wythenshaw Hospital, Manchester, UK. Whether differences in the distribution of aluminium in the breast are related to the known higher incidence of tumours in the outer upper quadrant of the breast remains to be ascertained.

... more about:
»ALUMINIUM »Tissue »antiperspirant »cause »factor

The major constituent of antiperspirant is aluminium salts which have long been associated with cancer, as well as other human disease. The daily application of aluminium-based antiperspirants should result in the presence of aluminium in the tissue of the underarm and surrounding areas, though there is almost no data on aluminium in breast tissue.

Breast cancer is the most common malignancy in women and is the leading cause of death among women aged 35-54. The cause of breast cancer is unknown and is likely to be a combination of generic and environmental factors.

Each of the patients in the study had undergone a mastectomy and biopsies from four different regions of the breast on a transect from the outer (axilla and lateral) to the inner (middle and medial) breast were collected.

Tests showed that while there were significant differences in the concentrations of aluminium between individuals they did show “a statistically higher concentration of aluminium in the outer as compared with the inner region of the breast”.

The report, published in the Journal of Inorganic Biochemistry, goes on: “We have confirmed the presence of aluminium in breast tissue and its possible regional distribution within the breast. Higher content of aluminium in the outer breast might be explained by this region’s closer proximity to the underarm where the highest density of application of antiperspirant could be assumed. There is evidence that skin is permeable to aluminium when applied as antiperspirant.

“However, we have no direct evidence that the aluminium measured in these breast biopsies originated from antiperspirant. An alternative explanation might be that tumourous tissue acts as a ‘sink’ for systemic aluminium”.

But it goes on to say that “aluminium in breast tissue might contribute” to breast cancer.

“Aluminium is a metalloestrogen, it is genotoxic, is bound by DNA and has been shown to be carcinogenic. It is also a pro-oxidant and this unusual property might provide a mechanistic basis for any putative carcinogenicity. The confirmed presence of aluminium in breast tissue biopsies highlights its potential as a possible factor in the aetiology of breast cancer”.

Chris Stone | alfa
Further information:
http://www.keele.ac.uk

Further reports about: ALUMINIUM Tissue antiperspirant cause factor

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>