Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computers help chemists fight emerging infections

21.08.2007
Computer analysis of existing drugs may be key to fighting new infectious agents and antibiotic-resistant pathogens like deadly tuberculosis strains and staph ‘superbugs.’ Researchers in Canada say the use of such “emergency discovery” technology could save time, money and lives during a sudden outbreak or a bioterrorism attack. They reported here today at the 234th national meeting of the American Chemical Society.

Drug ‘repurposing’ or ‘reprofiling’ is not new: Pharmaceutical companies have been seeking new uses of old drugs to extend patent protections and whenever new, off-label uses of the drugs are found. But reprofiling to deliberately develop emergency drugs is a new concept, made possible by advances in chemoinformatics, a new field that merges chemistry with computer science, according to study presenter Artem Cherkasov, Ph.D., of the University of British Columbia in Vancouver, Canada.

“In the case of new infectious threats, there might be no time to develop a completely new drug ‘from the ground up,’ as the corresponding toxicological studies and regulatory investigations will take years to complete properly,” says Cherkasov, a chemist with a background in computer-aided drug design and infectious disease. “Finding an already existing, well-studied therapeutic agent that will kill an emerging bug might provide a rapid, ‘first line of defense’ response option.”

Under the new computer-aided system, the researchers plan to first identify vulnerable cellular components of a pathogen using proteomics, or the study of proteins and their interactions. They will enter these key structures into the computer and, using elements of modern ‘Artificial Intelligence,’ will identify drugs that have the highest potential for activity against the target and for antimicrobial activity, says Cherkasov. Those compounds with the highest ‘ranking’ can then be quickly tested in the laboratory against the pathogen and eventually used to treat infected individuals, the researcher says.

The new approach is still in development for possible future use during an actual outbreak, Cherkasov notes. However, many non-antibiotic drugs have been shown to have antibiotic-like properties using this technique, he says. For example, computer studies have suggested that lovastatin, a drug marketed to lower cholesterol, and gentisic acid, an anti-inflammatory drug related to aspirin, both show promise as strong antibiotics. But more studies are needed before these compounds can be recommended for use as antibiotics in a clinical setting, he adds.

“It is not totally unexpected as there are thousands of existing drugs that are already enriched with target-binding structural features,” Cherkasov says. “Many of them were not designed as antibiotics but have the potential to act as such.”

“The chemical structures of compounds we identify usually look nothing like known antibiotics. But if a compound behaves like antibiotic in a computational model, it may act as one in a real life,” says Cherkasov, who has programmed his computer system to identify ‘antibiotic likeness,’ or those chemical structures which have the most potential for antibiotic activity.

There is a growing need to expand and complement the range of available antimicrobial compounds, as many big pharmaceutical companies have withdrawn from the field of anti-infective agents, according to Cherkasov. Only two novel antibiotics have entered the market in the last 20 years, he says.

The researchers plan to soon begin testing some of the newly identified antibiotic candidates against methicillin-resistant Staphylococcus aureus (MRSA). Also known as ‘superbugs,’ these bacteria are an increasingly worrisome cause of serious hospital-based infections and infections acquired in community settings.

Although Cherkasov’s research team specializes in battling bacterial infections, similar techniques can be applied to emerging viral infections, such as SARS and bird flu, he says. Likewise, the technique also provides a potential means of identifying quick treatments for bioterrorism agents, such as new strains of anthrax, as well as rare infectious diseases such as those sometimes encountered in third-world countries.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org
http://chemistry.org/bostonnews/images.html
http://www.acspresscenter.org

Further reports about: Cherkasov Emerging Infectious antibiotic identify infections

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>