Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Links Genetic Mutations to Lupus

30.07.2007
A gene discovered by scientists at Wake Forest University School of Medicine has been linked to lupus and related autoimmune diseases. The finding, reported online in Nature Genetics, is the latest in a series of revelations that shed new light on what goes wrong in human cells to cause the diseases.

“This research is a huge leap toward understanding the cause of lupus and related autoimmune diseases,” said Fred Perrino, Ph.D., a co-author on the paper and a professor of biochemistry at Wake Forest. “There had been few clues before now.”

Perrino, who discovered the gene in 1998, said he suspected it was involved in human disease, but it took a group of researchers from around the world collaborating to put the puzzle together.

“We’ve known that lupus was a complex disease, but now we have a specific protein and a particular cellular process that appears to be one of the causes,” said Perrino. “We’re connecting the dots to understand the biology of what’s going on with the disease.”

... more about:
»Antibodies »DNA »Genetic »Lupus »Perrino »TREX1

In Nature Genetics, lead author Min Ae Lee-Kirsch, M.D., from the Technische Universität Dresden in Dresden, Germany, and colleagues report finding variations of the TREX1 gene discovered by Perrino in patients with systemic lupus erythematosus. The study involved 417 lupus patients from the United Kingdom and Germany. Mutations were found in nine patients with lupus and were absent in 1,712 people without lupus.

"Our data identify a stronger risk for developing lupus in patients that carry variants of the gene," said Lee-Kirsch.

In recent years, the gene was also linked to Aicardi-Goutieres syndrome, a rare neurological disease that causes death in infants, and to chilblain lupus, an inherited disease associated with painful bluish-red skin lesions that occur during cold weather and usually improve in summer. The current research also links it to Sjogren’s syndrome, a form of lupus.

The diseases are all autoimmuine diseases, which means that the body makes antibodies against itself. In lupus, these antibodies cause pain and inflammation in various parts of the body, including the skin, joints, heart, lungs, blood, kidneys and brain. The disease is characterized by pain, heat, redness, swelling and loss of function.

Perrino began studying the protein made by the gene more than 14 years ago.

“We basically cracked open cells to locate the protein and find the gene,” said Perrino. “In the 14 years since, we’ve learned a lot about the protein and how it functions.”

The gene manufactures a protein, also known as TREX1, whose function is to “disassemble” or “unravel” DNA, the strand of genetic material that controls processes within cells. The “unraveling” occurs during the natural process of cells dying and being replaced by new cells. If a cell’s DNA isn’t degraded or unraveled during cell death, the body develops antibodies against it.

“If the TREX1 protein isn’t working to disassemble the DNA, you make antibodies to your own DNA and can end up with a disease like lupus,” said Perrino.

Perrino and colleagues at Wake Forest have been studying the gene and its protein since 1993. Thomas Hollis, Ph.D., an assistant professor of biochemistry at Wake Forest, is credited with solving the structure of both TREX1 and a similar protein, TREX2. Perrino has also developed a way to measure the function of the proteins.

In a study reported in April in the Journal of Biological Chemistry, Hollis and Perrino found that three variations of the gene reduced the activity of the protein by four- to 35,000-fold.

“Now that we have the structure, we can understand how it disassembles DNA and how mutations in the gene may affect that process,” said Hollis.

The researchers hope that understanding more about the gene’s mutations and the structure of the protein may lead to drug treatments to help ensure that mutant copies of the gene are inactive.

Wake Forest University Baptist Medical Center is an academic health system comprised of North Carolina Baptist Hospital and Wake Forest University Health Sciences, which operates the university’s School of Medicine. U.S. News & World Report ranks Wake Forest University School of Medicine 18th in primary care and 44th in research among the nation's medical schools. It ranks 35th in research funding by the National Institutes of Health. Almost 150 members of the medical school faculty are listed in Best Doctors in America.

| newswise
Further information:
http://www1.wfubmc.edu

Further reports about: Antibodies DNA Genetic Lupus Perrino TREX1

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>