Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switchable Adhesive

24.07.2007
Gel- and polymer-coated surfaces stick together and separate in response to an environmental stimulus

Two surfaces stick together, separate, and stick together again—on command. This discovery by a team of researchers from the Universities of Sheffield (UK) and Bayreuth contradicts our day-to-day experience. In the animal kingdom, geckos can climb up vertical inclines, displaying an incredible switchable adhesion as they do so. Insects also use another form of switchable adhesion to sit on your ceiling and then fly off before you climb up on your chair with a rolled-up newspaper. How these animals can switch off and on adhesion is not yet understood in detail. But the scientists led by Mark Geoghegan reveal the secret of their “intelligent” adhesion in the journal Angewandte Chemie.

One of the surfaces involved consists of a polyacid gel, a three-dimensionally cross-linked polymer containing many acid groups. This polymer network is so heavily soaked in liquid that it forms a solid, gelatinous mass. The second surface is a silicon chip onto which a polybase has been deposited. This polybase consists of polymer chains that stretch brush-like from the support and contain many basic groups. In water or slightly acidic solution, the acidic groups carry a positive charge while the basic groups are negatively charged; this causes them to attract each other. In addition to this electrostatic attraction, hydrogen bonds are also formed, which causes the two surfaces to be tightly stuck together.

If the surrounding solution is made more strongly acidic (a pH value of about 1), the bonds break up, the basic groups lose their charge, and the electrostatic attraction lets up. The two surfaces can then be slowly and carefully separated from each other without any damage. This detachment is reversible: If the pH value is raised again, making the solution less acidic, the gel and “brush” stick to each other once again. This cycle can be repeated many times by simply changing the pH value.

... more about:
»Stick »acidic »adhesion

Possible applications for such “smart” surface pairs include microelectromagnetic components (actuators), components for microfluidic systems, or carriers for pharmacological agents that could release their cargo under specific physiological conditions.

Author: Mark Geoghegan, University of Sheffield (UK), http://homepage.mac.com/mag16/

Title: Controlling Network–Brush Interactions to Achieve Switchable Adhesion

Angewandte Chemie International Edition, doi: 10.1002/anie.200701796

Mark Geoghegan | Angewandte Chemie
Further information:
http://homepage.mac.com/mag16/
http://pressroom.angewandte.org

Further reports about: Stick acidic adhesion

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>