Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new system for collaboration in cell communication

27.06.2007
Investigators from the Institute of Research in Biomedicine (IRB Barcelona) have identified a new signalling mechanism among cells in the fruit fly, Drosophila melanogaster.

The researchers found that two independent groups of cells generate the same signal by different pathways and that these cells subsequently act together to send the signal to the target cell. In this manner, the receptor cell receives the signal from two distinct sources. The results of this study appear in today’s advanced electronic issue of the journal, PNAS.

Jordi Casanova (IRB Barcelona/CSIC) explains that different types of cells working together to send a message can be regarded as a “security measure designed to ensure that the signal reaches the receptor cell in the proper fashion, neither too weakly nor too strongly”. Using RNA interference techniques (RNAi), the researchers observed that it was necessary to disactivate the signal in both groups of cells in order to prevent the message from being sent. They also observed that overstimulating signal production (producing more of the signalling molecule) created problems in the receptor cell, causing it to develop incorrectly.

Researchers made the discovery by studying the behaviour of a gene called torso-like during the early stages of embryonic development of the Drosophila fly. Two groups of cells activated the same torso-like gene separately and by different mechanisms when they were still in separate compartments inside the Drosophila ovary. Subsequently, the cells migrated until they met and jointly signalled the target cell.

... more about:
»Drosophila »receptor »signalling

Marc Furriols, lead author of the study, explains that the torso-like gene activates a membrane receptor molecule that is specific to Drosophila, but that the molecule belongs to a receptor family (that includes, for example, the human growth factor), which also reacts when it receives an external signal. “This research describes a very signalling mechanism in the fly which is very basic. It gives us good insight into how these mechanisms work so that we can later manipulate and control them.

Many of these pathways and signalling systems have been observed throughout evolution and hence, studies with models such as the fruit fly, can provide further insight into how these signalling mechanisms work in humans.

Sonia Armengou | alfa
Further information:
http://www.irbbarcelona.org

Further reports about: Drosophila receptor signalling

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>