Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Description of mutations and functoin of a gene implicated in the development of Fanconi anemia and predisposition to cancer

04.06.2007
An international research consortium, which included the participation of the Mutagènesi Group from the UAB, has made outstanding progress in the study of Fanconi anaemia.

They have described the function and range of possible mutations of the gene implicated in this disease that affects functions like nerve and skeletal development, blood cell formation and predisposition to cancer. This discovery will aid in detecting the defective gene that causes Fanconi anaemia, which is fundamental in prenatal diagnosis and even pre-implantation diagnosis where the objective is to select an embryo that is compatible with a transplant donor. Furthermore, identification of the responsible gene is indispensable for the future application of gene therapy.

The researchers have studied the function and mutational spectrum of the FANCD2 gene, one of thirteen genes implicated in Fanconi anaemia. The result is a step forward in the knowledge of the genetics and molecular biology of this disease which, although rare, is of important biomedical interest because the proteins that are implicated with it are also associated with different vital functions and cancer suppression. The work covers the molecular studies of all the D2 Fanconi patients (those affected by the Fanconi anaemia that present alternations of this gene) known around the world.

A more severe and rapid variant

... more about:
»FANCD2 »Fanconi »anaemia »implicated »mutations

This work also compared FANCD2 patients with 754 patients with FANCA, FANCC and FANCG, which are the more prevalent variants worldwide. The results indicate that the Fanconi D2 patients’ symptoms (clinical phenotype) are more severe than the others.

This is due to the vital function of the FANCD2 gene in the maintenance of the stability of the genome and in the development and function of the multiple organs and tissues, such as the formation of white blood cells, platelets and other elements of the blood (Fanconi D2 patients have a dysfunction in the production of blood in the medulla starting at 2.4 years old on average), neuronal development (89% of the Fanconi D2 patients suffer from microcephalia) or the formation of skeletal tissue (72% of the Fanconi D2 patients present skeletal malformations). In addition, the progression of the disease is more rapid in Fanconi D2 patients resulting in the need for early transfusions for survival and transplants when there is a compatible donor.

Differences with animal models

On the other hand, the research shows that the mutations do not totally eliminate the FANCD2 gene function, but cause a low level of expression of the FANCD2 protein. These results indicate that in humans, as opposed to what was observed in mice, the total absence of the FANCD2 protein is impossible (without this protein the embryo will not develop), and underline the findings that animal models do not always reflect the clinical phenotype of the disease.

A consortium of 13 European and North American laboratories and hospitals performed the research, which included the group directed by Dr. Jordi Surrallés of the Departament de Genètica i de Microbiologia (Department of Genetics and Microbiology) of the UAB and assigned to the Centro de Investigaciones Biomédicas en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBER-ER) (Biomedical Research Centre for Rare Diseases of the Carlos III Health Institute network). The American Journal of Human Genetics published the results in their May edition.

This study, together with others published by Dr. Surrallés’ team complements a model study described in the May edition of the review Cell Cycle that relates the genetic base of the disease with its clinical heterogeneous progression. This model is based on the fact that the patients with a total absence of FANCA protein, whose main function is to activate FANCD2 protein, have a milder clinical phenotype than FANCD2 patients. In turn, these are milder than patients with FANCD1/BRCA2, a gene that acts directly on a DNA level and promotes repairs in cases of genetic mutations.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

Further reports about: FANCD2 Fanconi anaemia implicated mutations

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>