Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists encourage cells to make a meal of Huntington's disease

08.05.2007
Scientists have developed a novel strategy for tackling neurodegenerative diseases such as Huntington's disease: encouraging an individual's own cells to "eat" the malformed proteins that lead to the disease.

Huntington's disease is one of a number of degenerative diseases marked by clumps of malformed protein in brain cells. Symptoms include abnormal movements, psychiatric disturbances like depression and a form of dementia. The gene responsible for the disease was discovered in 1993, leading to a better understanding of the condition and to improved predictive genetic testing, but it has yet to lead to any treatments that slow the neurodegeneration in Huntington's patients.

Professor David Rubinsztein, a Wellcome Trust Senior Clinical Fellow at the University of Cambridge, has been studying the molecular biology underlying Huntington's and other neurodegenerative diseases. Huntington's occurs when a protein known as huntingtin builds up in the brain cells of patients, mainly in neurons in the basal ganglia and in the cerebral cortex. Normally, cells dispose of or recycle their waste material, including unwanted or mis-folded proteins, through a process known as autophagy, or "self-eating".

"We have shown that stimulating autophagy in the cells – in other words, encouraging the cells to eat the malformed huntingtin proteins – can be an effective way of preventing them from building up," says Professor Rubinsztein. "This appears to stall the onset of Huntington's-like symptoms in fruit fly and mice, and we hope it will do the same in humans."

... more about:
»Huntington' »Rapamycin »Rubinsztein

Autophagy can be induced in mouse and fly models by administering the drug rapamycin, an antibiotic used as an immunosuppressant for transplant patients. However, administered over the long term, the drug has some side effects and Rubinsztein and colleagues are aiming to find safer ways of inducing autophagy long term.

Now, Professor Rubinsztein, together with Professor Stuart Schreiber’s lab at the Broad Institute of Harvard/MIT, Boston in the US, and Dr Cahir O’Kane’s group in the Department of Genetics at the University of Cambridge have found a way of identifying novel "small molecules" capable of inducing autophagy. The research is published today in the journal Nature Chemical Biology.

The screening process involves identifying small molecules that enhance or suppress the ability of rapamycin to slow the growth of yeast, though the selected molecules have no effects on yeast growth by themselves. Yeast is a single-celled organism and therefore less complex to study for initial screening purposes.

Three of the molecules that enhanced the growth-suppressing effects of rapamycin in yeast were also found to induce autophagy by themselves in mammalian cells independent of the action of rapamycin. These molecules enhanced the ability of the cells to dispose of mutant huntingtin in cell and fruit fly models and protect against its toxic effects.

"These compounds appear to be promising candidates for drug development," says Professor Rubinsztein. "However, even if one of the candidates does prove to be successful, it will be a number of years off becoming available as a treatment. In order for such drugs to be useful candidates in humans, we will need to be able to get them into right places in the right concentrations, and with minimal toxicity. These are some of the issues we need to look at now."

Craig Brierley | alfa
Further information:
http://www.cam.ac.uk
http://www.wellcome.ac.uk

Further reports about: Huntington' Rapamycin Rubinsztein

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>