Key Found to Kill Cystic Fibrosis Superbug

These investigators, under the leadership of Dr. Miguel Valvano, Department of Microbiology and Immunology, have had their research published in the May issue of the Journal of Bacteriology, and highlighted in Nature Reviews/Microbiology.

B. cenocepacia is a multi-drug resistant microorganism that lives in damp or wet places and causes rot in plants such as onions. While it rarely causes infection in healthy people, it can be fatal for people with cystic fibrosis (CF), an inherited disease where the lungs become clogged with thick mucus, often leading to chronic respiratory infections.

The team of researchers has identified a weakness in the armour that protects the B. cenocepacia bacterium from the effects of antibiotics. They hypothesize that preventing the synthesis of a key sugar required for this armour, 4-amino-4-deoxy-L-arabinose (Ara4N), may lead to a susceptibility within the cell membrane to antibiotics.

“We are very excited with these findings, as they will let us come up with novel molecules to disrupt the making of Ara4N,” says Valvano. “These molecules could then be tested as novel antibiotics.” Valvano is a Professor and Chair of the Department of Microbiology and Immunology, a Canada Research Chair in Infectious Diseases and Microbial Pathogenesis, and leader of the Infectious Diseases Research Group at the Siebens-Drake Research Institute. He is available for interviews.

The research was funded through the Canadian Cystic Fibrosis Foundation and the Canadian Institutes of Health Research (CIHR). “We're delighted by this news,” says Cathleen Morrison, CEO of the Canadian Cystic Fibrosis Foundation. “The possibility of a life-saving antibiotic to fight B. cenocepacia is tremendously encouraging to adults and children who have cystic fibrosis.”

Dr. Bhagirath Singh, Scientific Director of the CIHR Institute of Infection and Immunity, says “This discovery provides new hope for the eradication of these bugs from cystic fibrosis patients and to improve their quality of life by developing new treatments.”

Contacts:
Kathy Wallis,
Media Relations Officer, Schulich School of Medicine & Dentistry
The University of Western Ontario,
519-661-2111 Ext. 81136, Kathy.wallis@schulich.uwo.ca
Sagal Ali
Media Relations Officer
Canadian Cystic Fibrosis Foundation
1-800-378-2233 ext. 290
sali@cysticfibrosis.ca
David Coulombe
CIHR Media Specialist
Office: 613-941-4563
Mobile: 613-808-7526
mediarelations@cihr-irsc.gc.ca

Media Contact

Kathy Wallis EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors