Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earliest life or rare dirt?

07.03.2002


Life forms: Schopf thinks these marks are fossils of ancient bacteria.
© Nature


Dishing the dirt: Brasier’s team reckons geological processes made the squiggles.
© Nature


Gloves are coming off in ancient bacteria bust-up.

A claim to have found evidence of the oldest living things on Earth is being fiercely contested. The argument looks set to run and run, and no one may win, but it may lead to a better understanding of the origins of life on our planet.

The debate is academic, but its implications are not. The ’fossil bacteria’ in question are around 3.5 billion years old. That’s roughly one billion years older than the only confirmed fossil bacteria.



This would mean that complex biochemistry - including photosynthesis - originated around one billion years after the Earth formed. Photosynthesis released oxygen into the atmosphere, which has supported the majority of life ever since.

Dark microscopic squiggles in rocks called ’Apex chert’ from Western Australia, are the fossils of various species of cyanobacteria, according to William Schopf of the University of California, Los Angeles1.

A team led by Martin Brasier at the University of Oxford, UK, believes that Schopf’s ’fossils’, although unusual, are simply tiny clumps of impurities in the rock2.

Fellow researchers are loath to be named for fear of "exacerbating what looks like becoming an acrimonious debate", according to one. They are nonetheless following the details closely. "This is a fascinating debate," says another.

Most agree that the age of the Apex chert rocks may preclude either side ever being proved right.

Technical point

Schopf’s team studied the structure and chemical composition of the squiggles with a technique called laser-Raman imagery. The group argues that the marks are made up of carbon molecules, which are the decay products of living bacterial cells. "They are tiny little fossils," says Schopf.

Brasier’s team repeated some of Schopf’s analyses recently and disagrees. "Schopf’s hypothesis is deeply flawed," Brasier says.

Brasier’s team agrees that the marks’ chemical composition appears biological in origin. But the group thinks that they actually arose through unusual geological processes around ancient hydrothermal vents, where hot volcanic gases rise to the surface.

What’s more, the group says, the squiggles look nothing like other ancient microbes. "The shapes are far too complicated to be bacteria," says Brasier, who feels Schopf should drop his claim.

Brasier’s group asserts that biological-seeming molecules can result from reactions between the carbon dioxide and monoxide released by hot, metal-rich hydrothermal vents. These molecules could then have been sculpted into bacteria-esque filaments as the hot rocks they were born in cooled.

If this was the case, argues Schopf, such material would be found everywhere. So far it hasn’t been. "The facts are going to win and I’ve got the data," he says.

Win-win?

The one thing both parties agree on is that only time will tell. Schopf is continuing to analyse his putative fossils. A nanoscale examination of their ’cell membranes’ will, he claims, prove beyond doubt that the Apex chert does contain the oldest known remains of life on Earth.

Brasier and his team are now investigating the kind of chemical reactions that they believe produced the squiggles. The researchers suspect the reactions could themselves have created complex molecules such as amino acids and be the source of life on Earth. "Schopf may have stumbled on a site that may explain how life got started," says Brasier.

References

  1. Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J. & Czaja, A. D. Laser-Raman imagery of Earth’s earliest fossils. Nature, 416, 73 - 76, (2002).
  2. Brasier, D. M. et al. Questioning the evidence for Earth’s oldest fossils. Nature, 416, 76 - 81, (2002).

TOM CLARKE | © Nature News Service

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>