Polymers show promise for gene delivery, tissue scaffolds, other biomedical applications

Representing Virginia Tech faculty members and students from engineering, chemistry, and veterinary medicine, Chemistry Professor Tim Long will give an invited lecture at the 233rd National Meeting of the American Chemical Society in Chicago March 25-29.

The presentation will be an overview of novel polymers developed by Virginia Tech researchers for biomedical applications, with an emphasis on gene delivery and tissue scaffolds. “Both of these emerging technologies are enabled with fundamental advances in polymer chemistry,” Long said.

“Synthetic macromolecules can be easily modified to contain a variety of functional elements capable of interacting with biological systems,” he said. “Initial studies have found macromolecular topology to be a significant parameter in the delivery of DNA into cells.”

In the cell, the new DNA initiates the manufacture of therapeutic proteins, such as might be needed to treat a genetic disease where an enzyme or protein is not produced naturally. The Virginia Tech vectors presently being tested in cell cultures are proving to be superior to surfactant benchmarks and offer reduced toxicity to viral vectors, Long said.

Meanwhile, scientists at Virginia Tech have developed a single-step process for creating fibrous mats from a small organic molecule – a new nanoscale, biocompatible material (Jan. 20, 2006, Science, “Phospholipid Nonwoven Electrospun Membranes,” by Matthew G. McKee, John M. Layman, Matthew P. Cashion, and. Long, all at Virginia Tech.).

Since last year, they have improved the durability of the phospholipids through novel photochemistry during electrospinning and have begun to impregnate the porous mats with cells that will initiate tissue regeneration.

Media Contact

Susan Trulove EurekAlert!

More Information:

http://www.vt.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors