Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snail slime substitutes!

22.03.2007
A team of engineers have set a small robot climbing walls in order to compare how natural and artificial snail slimes work.

The news is reported in the latest edition of the Royal Society of Chemistry journal Soft Matter.

A snail’s slime acts as both a glue and a lubricant, allowing the snail to crawl up walls and across ceilings without falling off.

The snail pushes until the structure of the glue breaks, at which point it glides forward. When the snail stops, the glue structure reforms - sticking the snail safely to the ceiling.

... more about:
»ROBOT »glue »slime

The team, from the Massachusetts Institute of Technology (MIT), US, and the Catholic University of Leuven (CUL), Belgium, looked at how the cycle of glue breakdown and repair works in natural snail slime.

They also studied synthetic slimes based on clay and polymers, and calculated the ideal slime properties that climbing robots would need – and found a wide range of likely candidates, including hair gel and peanut butter.

Christian Clasen, of CUL, who worked on the study, said: “Who would have thought that snails could use other soft solids such as mayonnaise or axle grease as an adhesive lubricant to climb up vertical walls?”

Co-worker Randy Ewoldt, of MIT, said: “An important result is that snail mucus per se is not required for robots to climb walls. We can make our own adhesive locomotion material with commercial products of harvesting slime from a snail farm.”

Dr Ewoldt has first hand knowledge of the challenges involved in collecting snail slime.

He said: “I would entice a slug or snail with a piece of lettuce to crawl across a glass plate, and on the good days it would co-operate and leave enough of a slime trail for me to collect and test.”

Tony Kirby | alfa
Further information:
http://www.rsc.org

Further reports about: ROBOT glue slime

More articles from Life Sciences:

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>