Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No sex for 40 million years? No problem.

20.03.2007
A group of organisms that has never had sex in over 40 million years of existence has nevertheless managed to evolve into distinct species, says new research published today. The study challenges the assumption that sex is necessary for organisms to diversify and provides scientists with new insight into why species evolve in the first place.

The research, published in PLoS Biology, focuses on the study of bdelloid rotifers, microscopic aquatic animals that live in watery or occasionally wet habitats including ponds, rivers, soils, and on mosses and lichens. These tiny asexual creatures multiply by producing eggs that are genetic clones of the mother – there are no males. Fossil records and molecular data show that bdelloid rotifers have been around for over 40 million years without sexually reproducing, and yet this new study has shown that they have evolved into distinct species.

Using a combination of DNA sequencing and jaw measurements taken using a scanning electron microscope, the research team examined bdelloid rotifers living in different aquatic environments across the UK, Italy and other parts of the world. They found genetic and jaw-shape evidence that the rotifers had evolved into distinct species by adapting to differences in their environment.

Dr Tim Barraclough from Imperial College London’s Division of Biology explained: “We found evidence that different populations of these creatures have diverged into distinct species, not just because they become isolated in different places, but because of the differing selection pressures in different environments.

... more about:
»Organisms »Sex »bdelloid »creatures »rotifer »sexual

“One remarkable example is of two species living in close proximity on the body of another animal, a water louse. One lives around its legs, the other on its chest, yet they have diverged in body size and jaw shape to occupy these distinct ecological niches. Our results show that, over millions of years, natural selection has caused divergence into distinct entities equivalent to the species found in sexual organisms.”

Previously, many scientists had thought that sexual reproduction was necessary for speciation because of the importance of interbreeding in explaining speciation in sexual organisms. Asexual creatures like the bdelloid rotifers were known not to be all identical, but it had been argued that the differences might arise solely through the chance build-up of random mutations that occur in the ‘cloning’ process when a new rotifer is born. The new study proves that these differences are not random and are the result of so-called ‘divergent selection’, a process well known to cause the origin of species in sexual organisms.

Dr Barraclough adds: “These really are amazing creatures, whose very existence calls into question scientific understanding, because it is generally thought that asexual creatures die out quickly, but these have been around for millions of years.

“Our proof that natural selection has driven their divergence into distinct species is another example of these miniscule creatures surprising scientists – and their ability to survive and adapt to change certainly raises interesting questions about our understanding of evolutionary processes.”

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Organisms Sex bdelloid creatures rotifer sexual

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>